RAJEEV GANDHI GOVT. POST GRADUATE COLLEGE, AMBIKAPUR, SURGUJA (CG), INDIA

Learning Outcomes based Curriculum Framework

FOR

MASTER OF SCIENCE PROGRAMME

IN

MATHEMATICS

SEMESTER SYSTEM (CBCS)

SESSION 2023-2024

VISION

To be a global centre of excellence in mathematics for the growth of science and technology.

MISSION

To provide quality education and research in Mathematics through updated curriculum, effective teaching learning process.

To inculcate innovative skills, team-work, ethical practices among students so as to meet societal expectations.

Programme Outcome

P0-1	Basic Knowledge	Capable of delivering basic disciplinary
PO.2	In-denth Knowledge	Canable of describing advanced
102	in deput knowledge	knowledge gained during the programme
PO.3	Critical thinking and	Canable of analyzing the results critically
10-5	Problem Solving	and applying acquired knowledge to solve
	abilities	the problems
PO-4	Creativity and	Canable to identify formulate investigate
101	innovation	and analyze the scientific problems and
	millovation	innovatively to design and create
		products and solutions to real life
		problems
PO-5	Research aptitude and	Ability to develop a research aptitude and
	global competency	apply knowledge to find the solution of
		burning research problems in the
		concerned and associated fields at global
		level.
PO-6	Holistic and	Ability to gain knowledge with the holistic
	multidisciplinary	and multidisciplinary approach across the
	education	fields.
PO-7	Skills enhancement	Learn specific sets of disciplinary or
		multidisciplinary skills and advanced
		techniques and apply them for betterment
		of mankind.
PO-8	Leadership and	Ability to learn and work in a groups and
	Teamwork abilities	capable of leading a team even.
PO-9	Environmental and	Learn important aspects associated with
	human health	environmental and human health. Ability
	awareness	to develop eco-friendly technologies.
PO-10	Ethical thinking and	Inculcate the professional and ethical
	Social awareness	attitude and ability to relate with social
DO 11		problems.
PO-11	lifelong learning skills	Ability to learn lifelong learning skills
	and Entrepreneurship	which are important to provide better
		opportunities and improve quality of life.
		Capable to establish independent
		startup/innovation center etc.

Graduate Attributes in Mathematics

The graduate attributes in mathematics are the summation of the expected course learningoutcomes mentioned in the beginning of each course.

1. Disciplinary knowledge: Capability of demonstrating comprehensive knowledge of mathematics and understanding of one or more disciplines which form a part of an undergraduate programme of study.

2.Communications skills:

- Ability to communicate various concepts of mathematics effectively using examplesand their geometrical visualizations.
- ii. Ability to use mathematics as a precise language of communication in other branchesof human knowledge.
- iii. Ability to communicate long standing unsolved problems in mathematics.
- Ability to show the importance of mathematics as precursor to various scientificdevelopments since the beginning of the civilization.
- v. Ability to explain the development of mathematics in the civilizational context and its role as queen of all sciences.

3. Critical thinking and analytical reasoning:

- i. Ability to employ critical thinking in understanding the concepts in every area ofmathematics.
- ii. Ability to analyze the results and apply them in various problem appearing indifferent branches of mathematics.

4. Problem solving:

- i. Capability to solve problems in computer graphics using concepts of linear algebra.
- ii. Capability to solve various models such as growth and decay models, radioactive decay model, drug assimilation, LCR circuit & population models.

- iii. Ability to solve linear system of equations, linear programming problems and network flow problems.
- iv. Ability to provide new solutions using the domain knowledge of mathematics

5. Research-related skills

- i. Capability for inquiring about appropriate questions relating to the concepts in various fields of mathematics.
- ii. To know about the advances in various branches of mathematics.

6. Self-directed learning:

Ability to work independently and do in-depth study of various notions of mathematics.

7. Moral and ethical awareness/reasoning:

Ability to identify unethical behaviour such as fabrication, falsification or misrepresentation of data and adopting objective, unbiased and truthful actions in allaspects.

8. Lifelong learning:

Ability to think, acquire knowledge and skills through logical reasoning and to inculcate the habit of self-learning.

Programme Specific Outcomes

The post graduates shall be able to realise the following specific outcomes by the end of program studies: On successful completion of the M.Sc. Mathematics programme a student

PSO-1	Will have a strong foundation in both pure and applied mathematics.
PSO-2	Will be able to apply mathematical skills for solving problems and for preparing various competitive exams.
PSO-3	Will be able to communicate mathematical knowledge effectively, in writing as well as orally.
PSO-4	Will identify applications of mathematics in other disciplines, leading to enhancement of career prospects in different fields and research areas.
PSO-5	Will have basic knowledge of programming and computational techniques as required for employment.
PSO-6	Should have the knowledge of the fundamental axioms in mathematics and capability of developing ideas based on them and inculcate mathematical reasoning.
PSO-7	Will be able to locate and analyse the different mathematical texts with appropriate theoretical framework.
PSO-8	Have the knowledge of a wide range of mathematical techniques and application of mathematical methods/tools in science, social science, engineering and technology.
PSO-9	Should be able to develop analytical skills, critical thinking, creativity, communication and presentation skills through assignments, seminar, project work.
PSO-10	Should be able to apply their skills and knowledge that translate information presented verbally into mathematical form, select and use appropriate mathematical formulae or techniques in order to process the information and draw the relevant conclusion.

The M. Sc. programme is a two-year course divided into four semesters. The syllabus and schemes of examination are detailed herewith.

The M.Sc. course shall consist of 20 theory courses. The M.Sc. Mathematics Programme would make the students competent in the field of Mathematics and help them understand its role in modern day technology. Overall, the course would enable the students to understand the fundamental concepts . Knowledge gained through the open electives would be an asset in branching out in fields other than mathematics..

In I/II/III/IV semester there shall be five theory courses each of 70 marks and 30 marks for internal assessment test. In internal assessment, there will be 10 marks for written test, 10 marks for assignment and 10 marks for a seminar in each paper.

Thus there shall be T/I=100 marks for each paper, minimum passing / qualifying marks shall be 36% in each theory/internal assessment. Candidate will be required to pass separately in each theory and internal assessment.

ACADEMIC PROGRAMMES & SCHEMES

M.Sc. (Mathematics)

FIRST SEMESTER (CBCS System)

Descent	Course	Course	Exte Writte	External Written Test		Cont. Int. Valuation			
Paper	Туре	(Paper/Subjects)	Max. Marks	Ql. Marks	W. test	Seminar	Assignment	Total	Grand Total
I.	CCC	Advanced Abstract Algebra I	70	25	10	10	10	30	100
II.	CCC	Real Analysis I	70	25	10	10	10	30	100
III	CCC	Topology I	70	25	10	10	10	30	100
IV	OSC	Social Outreach And Internship & Entrepreneurship							100
	ECC/CB	Constitutionalism & Indian Political System	70	25	10	10	10	30	100
	ECC/CB	Adv.Discrete Mathematics I	70	25	10	10	10	30	100
	ECC/CB	Differential Geometry	70	25	10	10	10	30	100
v	ECC/CB	Mathematical Programming	70	25	10	10	10	30	100
	ECC/CB	Complex Analysis- I	70	25	10	10	10	30	100
		TOTAL							500

SECOND SEMESTER (CBCS System)

			Exte	rnal		Со	nt. Int. Valuati	on	
			Writte	n Test					
Paper	Course	Course (Paper/Subjects)	Max.	01.	W.	Seminar	Assignment	Total	Grand
	туре	(raper/subjects)	Marks	Marks	test	Semmar	nssignment	Total	Total
I.	ССС	Advanced Abstract	70	25	10	10	10	30	100
		Algebra II							
II.	CCC	Real Analysis II	70	25	10	10	10	30	100
		T 1 11	70	25	10	10	10	20	100
		l opology ll	70	25	10	10	10	30	100
		RESEARCH							100
IV	OSC	METHODOLOGY &							
		APPLICATION: BASICS							
	ECC/CB	ENVIRONMENTAL AND FOREST LAWS	70	25	10	10	10	30	100
		TORESTERING							
	ECC/CB	Advanced Discrete	70	25	10	10	10	30	100
	,	Mathematics (II)							
v	E 66 (6 E	Algebraic Number	70	25	10	10	10	30	100
	ECC/CB	Theory							
		Complex Analysis	70	25	10	10	10	20	100
	ECC/CB	II	70	25	10	10	10	30	100
TOTAL								500	

THIRD SEMESTER (CBCS System)

			Exte Writte	ernal en Test			Cont. Int. Va	luation	
Paper	Course Type	.ourse Course Type (Paper/Subjects)	Max. Marks	Ql. Marks	W. test	Seminar	Assignment	Total	Grand Total
I.	ССС	Integration Theory and Functional Analysis (I)I	70	25	10	10	10	30	100
II.	CCC	Partial Differential Equations & Mechanics (I)	70	25	10	10	10	30	100
III	CCC	Operations Research (1)	70	25	10	10	10	30	100
IV	OSC	Intellectual Property Rights	70	25	10	10	10	30	100
	ECC/CB	Tribal Studies	70	25	10	10	10	30	100
	ECC/CB	Mathematical Modelling	70	25	10	10	10	30	100
v	ECC/CB	Fluid Dynamics	70	25	10	10	10	30	10
	ECC/CB	Numerical Analysis-I	70	25	10	10	10	30	10
TOTAL								500	

FOURTH SEMESTER (CBCS System)

			Exte	rnal		Со	nt. Int. Valuati	on	
	Course	Course	Writte	n Test					
Paper	Туре	(Paper/Subjects)	Max.	Ql.	W.	Seminar	Assignment	Total	Grand
			Marks	Marks	test				Total
т		Integration Theory	70	25	10	10	10	30	100
1		Analysis (II)							
	222	Partial Differential	70	25	10	10	10	30	100
II.		Equations &	70	25	10	10	10	50	100
		Mechanics (II)							
	ССС	Operations Research	70	25	10	10	10	30	100
III		(II)							
117	056	Discontation							100
IV	USC	Dissertation							100
	ECC/CB	Fuzzy Sets and their applications	70	25	10	10	10	30	100
		Mathematical	70	25	10	10	10	30	100
	ECC/CB	Economics	70	20	10	10	10	50	100
v	ECC/CB	Mathematical Statistics	70	25	10	10	10	30	100
		statistics							
	ECC/CB	Number Theory and Cryptography	70	25	10	10	10	30	100
		Numorical Analysis II	70	25	10	10	10	30	10
	ειι/ιΒ	Numericai Anaiysis-II							
TOTAL								500	

M.Sc. in MATHEMATICS FIRST SEMESTER (ODD SEMESTER)

FACULTY OF SCIENCE

	Course Code Course Typ		Course (Paper/Subjects)	Credits	Contact Hours Per Week			EoSE Durat ion (Hrs.)	
					L	Т	Р	T h y	Р
	MSM 101	CCC	Advanced Abstract Algebra I	6	4	3	0	3	0
	MSM 102	CCC	Real Analysis I	6	4	3	0	3	0
	MSM 103	CCC	Topology I	6	4	3	0	3	0
	MSM S01	OSC	Social Outreach And Internship & Entrepreneurship	6	0	0	9	0	4
	MSM A01	ECC/CB	CONSTITUTIONALISM & INDIAN POLITICAL SYSTEM						
	MSM A02	ECC/CB	Advanced Discrete Mathematics (I)						
	MSM A03	ECC/CB	Differential Geometry	6	4	3	0	3	0
	MSM A04	ECC/CB	Mathematical Programming	1					
	MSM A05	ECC/CB	Complex Analysis- I	1					
1)	MINIMUM CREDITS SEMESTER IT WOUI	IN INDIVIDUAL SULD BE 30	UBJECT IS 6 AND IN COMPLETE		TOT	AL-30)	1	1

Paper I - Advanced Abstract Algebra -I

Course Outcome

After Completing the course the students will be able to

CO1- To get full concept of groups.

CO2- To deal with module and also get knowledge about simple modules, free Modules, quotient modules.

CO3- To understand linear transformation, reduction to triangular form, Nilpotent

transformation etc.

- CO4- To solve many problems related to linear transformation by primary decomposition theorem, Jordan block and Jordan form.
- CO5- To get knowledge about smith normal form.

	CO1	CO ₂	CO ₃	CO ₄	CO ₅
PO ₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_5		\checkmark	\checkmark	\checkmark	
PO ₆					
PO ₇					
PO_8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₉	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_{10}	\checkmark	\checkmark		\checkmark	
PO ₁₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

M.Sc	. (MATHI	EMATICS)	SEMESTER I				
COU	RSE TITL	E: Advanced Abstract Algebra	a (I)				
COU	RSE COD	E: MSM101	COURSE TYP	E: CCC			
Cred	it -6		Hour	s-90hrs			
	Theory	Practical	Theory	Practical			
		Ma	arks				
		Theory	Pra	ctical			
Sche	Scheme of Marks:						
i.	Object	tive type questions: Twelve q	uestions carrying 1 m	arks each to be asked			
	10 to l	be attempted.					
ii.	Short	answer type questions: Five	questions carrying 3 n	narks each to be set			
	three	to be attempted (Word limit	100 words).				
111.	three	e answer type questions: Five	e questions carrying 6	marks each to be set			
iv	Long	nswar type questions: Three	230 WULUSJ. Augstions carrying 11	I marks each to he set			
three to be attempted (Word limit 750 words)							
	unce	to be attempted (word mind	. 750 Wordsj.				
		Groups - Normal and Subnorn	nal series. Composition	series. Iordan-Holder			
	S	theorem. Solvable groups. Nil	potent groups. Direct pr	oduct, commutator			
it I	hr	sub-group of group.					
Un	18						
		Modules - Cyclic modules. Sim	ple modules. Semi-sim	ole modules. Schuler's			
Ι		Lemma. Free modules. Quotie	nt module, homomorph	ism of module			
it I	hrs		-				
Un	18						
		Linear Transformations - Alge	bra of linear transform	ation characteristic			
Π		roots, matrices and linear tran	isformations				
it II	hrs	,					
Un	18						
		Canonical Forms - Similarity of	of linear transformation	e Invariant subspaces			
		Reduction to triangular forms	Nilnotent transformation	ions Index of			
N	S	nilpotency. Invariants of a nil	potent transformation.	The primary			
nit	3hr	decomposition theorem. Jord	an blocks and Iordan fo	rms.			
Uı	18	1	· ,· · · · · · ·				
Smith normal form over a principal ideal domain and rank. Fundament							
\mathbf{b}	S	structure theorem for finite	ly generated modules	over a Principal ideal			
nit ¹	hr	domain and its applications to	o finitely generated abel	ian groups.			
Ur	18						

References-

- 1. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition)
- 2. I. N. Herstein: Topics in Albegra, Wiley Eastern Ltd.
- 3. D. S. Malik, J.N. Mordeson and M.K.Sen, Fundamental of Abstract Algebra, McGraw Hill (International Edition), New York. 1997.
- 4. Vivek Sahai and Vikas Bist: Algebra, Narosa Publishing House, 1999.
- 5. M.Artin, Algeabra, Prentice -Hall of India, 1991.

M.Sc. I Sem. Paper II– Real Analysis I

Course Outcome

After Completing the course the students will be able to

- CO1- To learn the role of real analysis in mathematics.
- CO2- To demonstrate the ability to use & operate sequence and series of function.

CO3- To demonstrate the ability to manipulate use power series.

CO4- To get knowledge about function of several variables, Taylor theorem,

Inverse function theorem, Implicit function theorem.

CO5- To gain skill by using Jacobians.

	CO ₁	CO ₂	CO ₃	CO ₄	CO ₅
P01	\checkmark	\checkmark	\checkmark	✓	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		✓
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_5	\checkmark		\checkmark	<	
P0 ₆	\checkmark	\checkmark			
P07					\checkmark
PO ₈	\checkmark	\checkmark	\checkmark		
PO ₉			\checkmark		
PO ₁₀	\checkmark	\checkmark		\checkmark	
PO ₁₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

M.S	c. (MATHI	EMATICS)	SEMESTER I			
COL	JRSE TITL	E: Real Analysis(I)				
COU	JRSE COD	E: MSM102	COURSE TYPE:	CCC		
Cre	dit -6		Hours	-90hrs		
	Theory	Practical	Theory	Practical		
		Ma	arks			
		Theory	Prac	tical		
Sch	eme of ma	irks:				
i.	Objectiv	e type questions: Twelve que	estions carrying 1 mark	s each to be asked		
ii	Short an	swer type questions: Five qu	estions carrying 3 mar	ks each to he set		
	three to	be attempted (Word limit 10	0 words).			
iii.	Middle a	inswer type questions: Five q	uestions carrying 6mai	rks each to be set		
	three to	be attempted (Word limit 25	50 words).			
iv.	iv. Long answer type questions: Three questions carrying 11 marks each to be se					
	three to	be attempted (Word limit 75	50 words).			
Unit I	18 hrs	Definition and existence of Riemann-Stieltjes integral, Properties of the Integral, integration and differentiation, the fundamental theorem of Calculus, integration of vector-valued functions, Rectifiable curves.				
Unit II	Sequences and series of functions, pointwise and uniform convergence Cauchy's criterion for uniform convergence, Weierstrass M-test, Abel's and Dirichlet's tests for uniform convergence, uniform convergence and continuity, uniform convergence and Riemann- Stieltjes integration uniform convergence and differentiation, Weierstrass approximation					
Unit	111 18 hrs	Power series, uniqueness th theorems. Rearrangements of	eorem for power series terms of a series, Riema	, Abel's and Tauber's nn's theorem.		
Unit IV	18hrs	Functions of several variabl open subset of R ⁿ , Chain rule, differentiation, Derivatives function theorem, Implicit fur	es, linear transformatio Partial derivatives, inter of higher orders, Taylo action theorem.	ns, Derivatives in an change of the order of r's theorem, Inverse		
Unit V	18 hrs	Jacobians extremum proble method, Differentiation of in Stoke's theorem.	ms with constraints, l tegrals. Partitions of uni	Lagrange's multiplier ty, Differential forms,		

References-

1. Principle of Mathematical Analysis By Walter Rudin (3rd edition) McGraw-Hill,

Kogakusha, 1976, International student edition.

- 2. Real Analysis By H.L.Roydon, Macmillan Pub.Co.Inc.4th Edition, NewYork .1962.
- 3. G.de Barra, Measure Theory and Integration, Wiley Eastern Limited, 1981.
- 4. P.K. Jain and V.P. Gupta, Lebesgue Measure and Integration, New Age International
 - (P) Limited Published, New Delhi, 1986 Reprint 2000).
- 5. Walter Rudin, Real & Complex Analysis, Tata McGraw-Hill Publishing house.

Paper III - Topology-I

Course Outcome

After Completing the course the students will be able to

CO1-To get knowledge about countable & uncountable set and uses of

Schroeder Bernstein theorem.

CO2-Undrestand to construct topological space from metric space and

using general properties of neighbourhood, open set, closed set, base,

subbase etc.

CO3- Apply the property of open set, closed set, interior point, accumulation

points and derived sets in deriving the proofs of various theorem.

CO4- Understand the concept of separable axioms, compact space.

	CO ₁	CO ₂	CO ₃	CO ₄
PO1	\checkmark	\checkmark	\checkmark	✓
PO_2	\checkmark	\checkmark		\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark
PO_4	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅	\checkmark	\checkmark	>	\checkmark
PO_6				
PO ₇				\checkmark
PO ₈	\checkmark	\checkmark	\checkmark	
PO ₉	\checkmark	\checkmark	\checkmark	
PO ₁₀	\checkmark	\checkmark	\checkmark	
PO ₁₁	\checkmark	\checkmark	\checkmark	\checkmark

M.Sc. (MATHEMATICS)			SEMESTER I		
COL	JRSE TITL	E: Topology I			
COU	JRSE COD	E: MSM103	COURSE TYPE: CCC		
Cre	dit -6		Hour	s-90hrs	
	Theory	Practical	Theory	Practical	
-		M	arks		
		Theory	Pra	ctical	
Sch	eme of ma	irks:			
i.	Objectiv	e type questions: Twelve que	estions carrying 1 marl	ks each to be asked	
	10 to b	e attempted.			
11.	Short an	swer type questions: Five qu	estions carrying 3 mai	rks each to be set	
	three to	be attempted (Word limit 10	0 words).		
111.	Middle a	inswer type questions: Five q	uestions carrying 6ma	irks each to be set	
i	Long and	be attempted (word limit 2:	00 WOFUSJ. Loctions corruing 11 m	arks and to be set	
1v.	three to	he attempted (Word limit 7	(1911) (all ying 11 in	al KS each to be set	
	unee to	Countable and uncountable se	ote Infinite cote and the	Aviom of Choico	
		Cordinal numbers and its arit	hmatic Schroader-Bern	stain theorem Cantor's	
tI	ırs	theorem and the continuum h	white where the second s	well-ordering	
Jni	[8]	theorem		, wen braching	
		Definition and examples of to	pological spaces. Closed	sets. Closure. Dense	
Π	S	subsets. Neighbournoods. Inte	erior, exterior and bound	dary. Accumulation	
nit	8hi	points and derived sets. Bases	s and sub-bases. Subspace	ces and relative	
n	H	topology			
		Alternate methods of defining	a topology in terms of t	erms of Kuratowski	
III	Ş	Closure Operator and Neighb	ourhood Systems. Contin	nuous functions and	
nit	3 hr	homeomorphism. First and Se	econd Countable spaces.	Lindelof's theorems.	
Ur	18	Separable spaces. Second cou	ntability and separabilit	у	
	s	Separation axioms & their cha	aracterizations and basic	c properties. Urysohn's	
nit	hr	lemma, Tietz extension theor	em		
Ur	191				
		Compactness. Continuous fu	nctions and compact se	ets. Basic properties of	
		Compactness. Compactness	and finite intersection	property. Sequentially	
>	rs	and countably compact se	ts. Equivalence of co	ompactness, countable	
nit	8 h	compactness and sequenti	al compactness in n	netric space, Local	
Ŋ	11	compactness		-	

References-

- 1. James R. Munkres, Topology, A First Course, Prentice Hall of India Pvt. Ltd., New Delhi, 2000.
- 2. K. D. Joshi, Introduction to General Topology, Wiley Eastern Ltd., 1983.
- 3. J. Dugundji, Topology, Allyn and Bacon, 1966 (reprinted in India by Prentice Hall of India Pvt. Ltd.).
- 4. George F. Simmons, Introduction to Topology and modern Analysis, McGraw-Hill Book Company, 1963.
- 5. J. Hocking and G Young, Topology, Addison-Wiley Reading, 1961.
- 6. J. L. Kelley, General Topology, Van Nostrand, Reinhold Co., NewYork, 1995.
- 7. M. J. Mansfield, Introduction to Topology, D.Van Nostrand Co. Inc. Princeton, N. J., 1963.
- 8. B. Mendelson, Introduction to Topology, Allyn & Bacon, Inc., Boston, 1962.
- 9. C. Berge, Topological Spaces, Macmillan Company, New York, 1963.
- 10. S.S. Coirns, Introductory Topology, Ronald Press, New York, 1961.

Paper IV – Social Outreach And Internship & Entrepreneurship Course Outcomes:

- **CO 01.** To introduce to the alternative policy approach to address global and local economic environmental problems and to apply market and non-market method for resolving economic environmental problems.
- **CO 02.** On completion of the course, the student will be able to identify the various policy alternatives that can be applied to address an environmental problem.
- **CO 03.** The student will also be able to use market and non-market methods and apply them to estimate the extent of welfare gain or loss associated with any development and conservation programmes.
- **CO 04.** They will also be able to identify factors that determine international cooperation to mitigate global economic environmental problems
- **CO 05**. To convert the Jobseekers into Job providers and transform them as active contributors to national economy.
- **CO 06.** To create entrepreneurship culture.
- **CO 07.** To create self employment
- **CO 08**. To create cooperative culture in sociery

SYLLABUS

Scheme Of Marks :-

- 1. Social Outreach 50 Marks (Project Work 40 Marks & Viva- Voce 10 Marks)
- 2. Internship & Entrepreneurship 50 Marks (Project Work 40 Marks & Viva- Voce 10 Marks)

Viva Voce – On The Basis Of Their Project And Class Room Study Of Entrepreneurship

Internship :- The student could also be required 15 day internship for preparation of a

project report with an enterprise involving product /services

SYLLABUS

Module/Unit	Description			
& Lecture				
Module-1	Entrepreneurship Concept And Significance			
(Lecture-6)	Entrepreneurship: Definition, Concepts of entrepreneurship			
	development, self Employment, Characteristics of successful			
	entrepreneur.			
Module-2	Entrepreneurship Support Institutions And Environment			
(Lecture-6)	Institution and schemes of Government of India, Financing- Long,			
	medium and short Term loan, Financial Institutions-NABARD,			
	SIDBI, Nationalised banks etc., DIC- Role Schemes and			
	programmes, documentation of loan application, sanction,			
	acceptance, Release of loan.			
Module-3	Business Opportunities and Business Planning			
(Lecture-6)	Market survey and assessment-Demand, Supply and Nature of			
	competition, cost and price of products, selection of enterprise,			
	Identify problem and opportunities, The Project Report.			
Module-4	General Management and Finance			
(Lecture-6)	The fourth stage growth model-Planning, Organizing, executing,			
	controlling resources Both human and material, asset management,			
	business communication, Advertisement, public relation, Finance-			
	Meaning, need of financial management, Type of business finance and			
	management, Financial Planning, importance of budgets.			
Module-5	Market Management –			
(Lecture-6)	Meaning and Concept of marketing, objectives of marketing			
	management, Marketing Plan.			

Suggested References

- **01.** Entrepreneur Development, SS Khanna, S Chand & Company Ltd, Ram Nagar New Delhi.
- **02.** Entrepreneur and Entrepreneurship Development and Planning in India, D. N. Mishra, Chugh Publication, Allahabad.
- **03**. Science Tec. Entrepreneur (A BI Monthly Publication) Centre for Entrepreneurship Development M. P. (CEDMAP), 60 Jall road Jhangerbad, Bhopal-46200-2508.
- **04.** Bullding A Chain of Customers, Richard J Schonberger, The Free Press, New York.
- **05.** Entrepreneurship, Holt, Prentice Hall, New Delhi.
- **06.** Management of Small Scale Industry, Vasant Desal, Himalayan Publishing House, Bombay.

Paper V- Constitutionalism & Indian Political System

Course Outcome

After the completion of this course, the students will be able to:

- CO1 Have a comprehensive understanding of the meaning, features and characteristics of the Preamble of the Constitution of India.
- CO2 Describe m details the difference between Constitution and Constitutionalism.
- CO3 Compare and contrast the different forms of government, namely unitary and federal, parliamentary and presidential with particular reference to Indian Political System.
- CO4 Demonstrate an in-depth knowledge of the concepts of Citizenship, Fundamental Rights, Constitutional amendment procedures and the judicial system in India.
- CO5 Explain in detail the Legislative, Executive and Judicial structure in the Government of India.

CO6 Show interest in research studies in relevant topics, like -

decentralization of governance, local self-governance.

MASTER OF SCIENCE			I SEMESTER		
COURSE CODE: COURSE TYPE: ECC					
		COURSE TITLE:Constitution	alism & Indian Political System		
Credit	Credit: 06 Hours : 90				
Theor	ry:	06	Theory: 90		
MARK	(S :	100 THEO	RY: 70 CCA : 30		
Schen i.	ne o Obj	of marks: jective type questions: Twelve questions	carrying 1 marks each to be asked 10 to		
ii.	be	attempted. ort answer type questions: Five question	s carrying 3 marks each to be set three to		
	bea	attempted (Word limit 100 words).			
iii.	Mi	ddle answer type questions: Five questio	ns carrying 6marks each to be set three		
iv	tot	oe attempted (Word limit 250 words). ng answer type questions: Three question	as carrying 11 marks each to be set three		
1.	to	be attempted (Word limit 750 words).	is callying 11 marks each to be set timee		
UNIT - 1	18 Hrs	Meaning: Constitution, Constitutional government & constitutionalism; Difference between Constitution & Constitutionalism; Constitutionalism: Basis, Elements, Features & future. Forms of Government: Democracy & Dictatorship, Unitary & Federal, Parliamentary & Presidential form. Ideals of the Indian Constitution incorporated in the Preamble. Special Features of the Indian Constitution.			
A 1		Concept of State and Citizenship, Judicial Re	eview and Fundamental Rights, Directive Principles of the		
[- 2	rs	State Policy, Fundamental Duties, Procedur	e to Amend the Indian Constitution, Judiciary: Supreme		
INI	8 H	Court and High Court, Judicial Activism and	Public Interest Litigation and Provisions relating to		
n	1	Emergency.			
UNIT - 3	18 H rs	Minister and Council of Ministers. Local Bo	er, Council of Ministers. State Executive- Governor, Chief dies &Panchayati Raj		
		Parliament of India, State Legislatures, Leg	islative Bills: Ordinary, Money and Financial, Union State		
- 1	Hrs	Relations, Principles of the 'Separation of	Power and the 'Principles of Check & Balance',Political		
INI	18	Parties and Pressure Groups. Challenges	s before Indian Democracy: Terrorism, Regionalism,		
n		Communalism, Linguistics and National Inc	egration.		
10		Controller & Accountant General of India,	Solicitor General, Advocate General, Election Commission,		
 -	Hrs	Union and State(s) Public Service Commiss	ion, Finance Commission.		
UNI.	18 F				
Ι					

Paper V- Advanced Discrete Mathematics (I)

Course Outcome

The students will be able

CO1- To determine equivalent logic expression.

CO2- To understand the concept of Homomorphism ,congruence relation.

CO3- To demonstrate the ability to use lattices, Boolean algebra.

CO4- to demonstrate the ability to solve the problem using AND,OR.NOT gates

CO5- To demonstrate the ability to know grammer and language.

	CO1	CO ₂	CO ₃	CO ₄	CO ₅
P01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅	\checkmark	\checkmark	\checkmark	\checkmark	
PO ₆	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₇		\checkmark			\checkmark
PO ₈	\checkmark	\checkmark	\checkmark		
PO ₉			\checkmark		
PO ₁₀	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₁₁	\checkmark	\checkmark		\checkmark	\checkmark

M.Sc. (MATHEMA	ATICS)	I SEMESTER			
COURSE CODE: N	MSM A02 CO	DURSE TYPE: ECC/CB			
COURSE TITLE: Advanced Discrete Mathematics (I)					
CREDIT-06		HOURS-90			
THEORY-06		THEORY-90			
MARKS-100	Theory-70	CCA-30			
Scheme of marks	S: type questions: Twelve questions	carrying 1 marks each to be asked 10 to			
be attemp	ted.	carrying 1 marks each to be asked 10 to			
ii. Short answ	wer type questions: Five question	s carrying 3 marks each to be set three to			
be attempt	ted (Word limit 100 words).				
iii. Middle an	swer type questions: Five question	ns carrying 6marks each to be set three			
iv. Long answ	ipieu (woru innit 250 worus). zer tyne questions: Three question	is carrying 11 marks each to be set three			
to be atten	npted (Word limit 750 words).				
		- Democratica and Tartalasian Orantifican			
	Formal Logic-Statements. Symboli	c Representation and Tautologies. Quantifiers,			
hrs	Examples of Semigroups and mon	and Logic. Sening oups & Monords-Demnitions and			
18	examples of semigroups and monolus (including those pertaining to concatenation operation)				
	Homomorphism of semigroups and monoids. Congruence relation and Quotient				
hrs	Semigroups. Subsemigroup and submonoids. Direct Products. Basic Homomorphism				
18	Theorem.				
	Lattices-Lattices as partially order	ed sets. Their properties. Lattices as Algebraic			
	Systems Sublattices Direct produce	cts and Homomorphisms Some Special Lattices			
ILS.	e.g., Complete.Complemented and	Distributive Lattices, Boolean Algebras-Boolean			
4 8 P	Algebras as Lattices. Various Boole	ean Identities. The Switching Algebra example.			
-	Subalgebras,				
	Direct Products and Homomorphis	sms. Join-Irreducible elements, Atoms and			
v.	Minterms. Boolean Forms and The	ir Equivalence. Minterm Boolean Forms, Sum of			
3 hr	Products Canonical Forms. Minimi	zation of Boolean Functions. Applications of			
18	Boolean Algebra to Switching Theo	bry (using AND,OR & NOT gates). The			
	Karnaughmap Method.				
	Grammars and Languages-Phrase-	Structure Grammars. Rewriting Rules.			
	Derivations. Sentential Forms. Lan	guage generated by a Grammar. Regular, Context-			
Ś	Free, and Context Sensitive Gramm	nars and Languages. Regular sets, Regular			
8 hr	Expressions and the Pumping				
16	Lamma Kleene's Theorem Nation	s of Suntay Analysis Bolish Notations Conversion			
	of Infix Expressions to Polish Nota	tions. The Reverse Polish Notation			

		1 Flements of Discrete Mathematics By C. I. Liu
		1. Elements of Discrete Mathematics By C. E. Elu
		2. J. P. Tremblay & R. Manohar, Discrete Mathematical Structures with
		Applications to Computer Science, McGraw-Hill Book Co., 1997.
		3. J. L. Gersting, Mathematical Structures for Computer Science, (3rd
		edition), Computer Science Press, New York.
		4. Seymour Lepschutz, Finite Mathematics (International) edition (1983),
		McGraw-Hill Book Company, New York.
TED	NGS	5. S. Wiitala, Discrete Mathematics-A Unified Approach, McGraw-Hill Book
GGES	EADI	Co.
SU	X	6. J. E. Hopcroft and J.D Ullman, Introduction to Automata Theory,
		Languages & Computation, Narosa Publishing House.
		7. C. L Liu, Elements of Discrete Mathematics, McGraw-Hill Book Co.
		8. N. Deo. Graph Theory with Application to Engineering and Computer
		Sciences. Prentice Hall of India
		9. K. L. P. Mishra and N. Chandrashekaran, Theory of Computer Science
		РНІ(2002)

Paper V- DIFFERENTIAL GEOMETRY

Course Outcome

The students will be able

- CO1-To develop understanding of basics of differential geometry.
- CO2- To understand and solve problems related to surface of revolution.
- CO3-To get knowledge about geodesics.
- CO4- To demonstrate the ability to solve problem related to non-intrinsic properties of surface.

CO5- To get knowledge about fundamental equation of surface theory,

Hilbert lemma.

	CO1	CO ₂	CO ₃	CO4	CO ₅
PO_1	\checkmark	<	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	✓	\checkmark		\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_5	<			\checkmark	
P06	\checkmark	\checkmark			
PO_7					\checkmark
PO ₈	\checkmark	✓	\checkmark		
PO9			\checkmark		
PO ₁₀	\checkmark	\checkmark		\checkmark	
PO ₁₁	\checkmark	\checkmark	\checkmark		

M.Sc. (MATHEMATICS)				I SEMESTER				
COUI	RSE CODE:	03	COURSE TYPE: ECC/CB					
	COURSE TITLE: DIFFERENTIAL GEOMETRY							
		DIT: 6		HOURS: 90		RS: 90		
THE	ORY: 6	PRACTICAL: (THEORY: 90		PRACTICAL: 0			
				MARK	5		1	
	THEORY: 100 (30 + 70) PRACTICAL-0							
Sche	me of mar	·ks:						
i.	Objective	type qu	estions: Twelv	ve questio	ns carrying 1 i	narks	each to be asked	
	10 to be Short and	e attemp	ted.	vo quocti	one corming 2	mark	c anch to ha cat	
11.	three to b	e attem	oted (Word lin	ve quesu nit 100 w	ords).	IIIal K	s each to be set	
iii.	Middle an	iswer ty	pe questions:	Five ques	tions carrying	6marl	ks each to be set	
	three to b	oe attem	pted (Word lin	mit 250 w	ords).			
iv. I	Long answ three to b	ver type	questions: Thi	ree questi mit 750 w	ons carrying 1	1 mar	ks each to be set	
	SPAC	E CURVE	S-	mit / 50 w	orusj.			
rs.	Defini	Definition of a space curve - Arc length - tangent - normal and binormal -						
8 hi	curvat	curvature and torsion - contact between curves and surfaces - tangent surface -						
1	involu	involutes and evolutes - Intrinsic equations - Fundamental Existence Theorem for						
<u> </u>	space curves - Helics.					ace - curves on a		
surface - Surface of revolution - Helicoids - Metric - Direction coefficient				coefficients - families				
18	of curves - Isometric correspondence - Intrinsic properties.							
	GEODESICS-							
							C I I	
hrs	Geode	Geodesics - Canonical geodesic equations - Normal property of geodesics -						
18	Theor	Theorem - Gaussian curvature - surface of constant curvature.						
	NON I	NTRINS	IC PROPERTIE	S OF A SU	RFACE			
	_							
rs.	The se	econd fui	ndamental form	1 - Principa	al curvature - Li	nes of	curvature -	
8 hi	Develo	opable -	Developable as	sociated w	rith space curve	s and v	with curves on	
Ŧ	surfac	surface - Minimal surfaces - Ruled surfaces.						
	Chapt	Chapter III: Sections 1 to 8						
	DIFFE	RENTIA	L GEOMETRY O	F SURFAC	ES-			
	Funda	montal	Guations of S.	rface These	m Fundaman		stance Theorem for	
hrs	runda	unental l	Equations of Su	nace Ineo	ts are umblics	ai Exis	stence Theorem for	
18	surfac	re of cons	tant curvature	- Complet	e surfaces	innel	t s tennina - Compact	
	Juilde		alui cui valui C	complet	c surraces.			

Recommended Text
T.J.Willmore, An Introduction to Differential Geometry, Oxford University Press,(17th Impression) New Delhi 2002. (Indian Print)
Reference Books
1. Struik, D.T. Lectures on Classical Differential Geometry, Addison - Wesley, Mass. 1950.
2. Kobayashi. S. and Nomizu. K. Foundations of Differential Geometry, Interscience Publishers, 1963.
3. Wilhelm Klingenberg: A course in Differential Geometry, Graduate Texts in Mathematics, Springer-Verlag 1978.
4. J.A. Thorpe Elementary topics in Differential Geometry, Under - graduate Texts in Mathematics, Springer - Verlag 1979.

Paper V- MATHEMATICAL PROGRAMMING

Course Outcome

The students will be able

- CO1- To analyze and solve mathematical programming models of real life situations.
- CO2- To solve optimization problem graphically, algebraically.
- CO3- To learn the concept of Simplex method and revised Simplex method.
- CO4- To analyze the concept of Goal Programming.

	CO1	CO ₂	CO ₃	CO ₄
PO ₁	\checkmark	\checkmark	\checkmark	\checkmark
PO_2	\checkmark	\checkmark	\checkmark	
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark
PO_4	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅	\checkmark			\checkmark
PO ₆	\checkmark	\checkmark	\checkmark	\checkmark
P07			\checkmark	
PO ₈	\checkmark	\checkmark	\checkmark	
PO ₉		\checkmark	\checkmark	
PO_{10}	\checkmark	\checkmark		\checkmark
PO ₁₁	\checkmark	\checkmark		

M.Sc. (MATHEMATICS) I SEMESTER							
COURSE CODE:MSM A04COURSE TYPE:ECC/CB							
COU	COURSE TITLE: MATHEMATICAL PROGRAMMING						
CREDIT: 6 THEORY: 90							
THEORY: 6							
MARKS- 100 THEORY-70 CCA-30							
Sch	eme	of marks:					
1.	00	Jective type questions: Tweive questio	ns carrying 1 marks each to be asked				
ii	She	o to be attempted. ort answer type questions: Five questi	ons carrying 3 marks each to be set				
	thr	ee to be attempted (Word limit 100 w	ords).				
iii.	Mi	ddle answer type questions: Five ques	tions carrying 6marks each to be set				
	th	ree to be attempted (Word limit 250 w	ords).				
iv.	Lon	ng answer type questions: Three questi	ons carrying 11 marks each to be set				
	thr	ree to be attempted (Word limit 750 w	ords).				
		Integer Linear Programming-Types of	Integer Linear Programming Problems -				
		Concept of Cutting Plane - Gomory's All	Integer Cutting Plane Method - Gomory's				
nrs		mixed Integer Cutting Plane method - B	ranch and Bound Method Zero-One				
[8]		Integer Programming.Dynamic Programming: Characteristics of Dynamic					
		Programming Problem - Developing Optimal Decision Policy - Dynamic					
		Programming Under Certainty - DP approach to solve LPP.					
		Classical Optimization Methods-Unco	nstrained Optimization - Constrained				
ILS		Multi-variable Optimization with Equality Constraints - Constrained Multi-					
8 h		variable Optimization with inequality Conversion	onstraints. Non-linear Programming				
		Programming - Wolfe's modified Simple	x Methods - Beale's Method				
		The arm of Circular Mathed Constitution	A Methous - Deale S Methou.				
		Sumbles Variables Deduction of ony For	and Standard form of LP - Slack and				
hrs		Alternative Outine leadetien Unbernd	asible solution to a Basic Feasible solution -				
18		Alternative Optimal solution - Unbound	ed solution - Optimality conditions - Some				
		complications and their resolutions - De	generacy and its resolution.				
		Revised Simplex Method-:Standard for	rms for Revised simplex Method -				
hrs		Computational procedure for Standard	form I - comparison of simplex method and				
[8]		Revised simplex Method.Bounded Varia	bles LP problem: The simplex algorithm.				
` '		-					
		PARAMETRIC LINEAR PROGRAMMING-	Variation in the coefficients cj , Variations				
s		in the Right hand side.Goal Programmin	g: Difference between LP and GP approach				
hr		- Concept of Goal Programming - Goal Pr	rogramming Model formulation - Graphical				
18		Solution Method of Goal Programming -	Modified Simplex method of Goal				
		Programming.					
1							

GS	Recommended Book
READIN	1. J.K.Sharma, Operations Research, Theory and Applications, Third Edition (2007) Macmillan India Ltd.
TED	Reference Books
SUGGES	1. Hamdy A. Taha, Operations Research, (seventh edition) Prentice - Hall of India Private Limited, New Delhi, 1997.
	2. F.S. Hillier & J.Lieberman Introduction to Operation Research (7th Edition) Tata- McGraw Hill ompany, New Delhi, 2001.
	3. Beightler. C, D.Phillips, B. Wilde ,Foundations of Optimization (2nd Edition) Prentice Hall Pvt Ltd., New York, 1979
	4. S.S. Rao - Optimization Theory and Applications, Wiley Eastern Ltd. New Delhi. 1990

M.Sc. I Sem. Paper V- Complex Analysis-I Course Outcome

The students will be able

CO1- To learn the role of Cauchy- Goursat theorem and Cauchy integral formula

in calculation of contour integration.

CO2- To learn Taylor & Laurent series for expansion of analytic function.

CO3- To understand the concept of Bilinear transformation.

CO4- To know the concept of Hurwitz theorem, Montel theorem

CO5- To understand the concept of Gamma function, Zeta function.

	CO_1	CO ₂	CO ₃	CO_4	CO_5		
PO ₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark		
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
PO ₅				\checkmark			
PO ₆	\checkmark	\checkmark					
PO ₇					\checkmark		
PO ₈	\checkmark	\checkmark	\checkmark				
PO ₉			\checkmark				
PO ₁₀	\checkmark	\checkmark		\checkmark			
PO ₁₁	\checkmark	\checkmark					

M.Sc. (MATHEMATICS)		IATHEMATICS)	I SEMESTER					
COURSE CODE: MSM A-05			COURSE TYPE:ECC/CB					
COURSE TITLE: COMPLEX ANALYSIS-I								
CREDIT:6			HOURS:90					
TH	EOR	Y: 6	THEORY:90					
M	ARK	S-100 THEORY: 70	CCA-30					
Scheme of marks:								
1.	1	Jective type questions: I weive questio	ns carrying 1 marks each to be asked					
	L Ch	o to be attempted.	and comming 2 montrs coals to be got					
11.	500	Short answer type questions: Five questions carrying 3 marks each to be set						
		ee to be attempted (word limit 100 words).						
111.		adie answer type questions: Five questions carrying 6marks each to be set						
i.,	Lor	ree to be attempted (word limit 250 w	orusj. one corruing 11 marke oach to ho cot					
IV.		ig answer type questions: Three questions to be attempted (Word limit 750 w	onds)					
	um	Complex Integration Cauchy Courset	Theorem Cauchy integration formula					
hrs		Theorem, cauchy integration formula.						
18		Higher order derivatives. Morera's theorem, Cauchy's inequality and Liouvi						
• •		Theorem, Taylor's theorem. Laurent's series						
rs		The zero of an analytic function, Si	ngularities, Meromorphic functions, The					
8 h		argument principle, Rouche's theorem The Fundamental theorem of Algebra						
7		Maximum Modulus principle. Schwarz's lemma. Inverse function theorem						
		maximum moutilus principie. Senwarz 5 feminia, inverse function tileorem.						
		Bilinear transformation -its properties a	nd classification. Definitions and examples					
hrs		of conformal manning						
18		of conformal mapping.						
s		Spaces of analytic function Hurwitz'	s theorem Montel's theorem Riemann					
hr		spaces of analytic function. Hurwitz's theorem. Monter's theorem. Riella						
18		mapping theorem.						
		Wajaratrass's Factorization theorem Ca	mma function and its properties Disman					
			mina function and its properties. Riemann					
8 hrs		Zeta Function. Functional equation, Runge's theorem. Mittag Leftler's theorem						
-								

NGS	Books Recommended :-				
EADI	• L.V. Ahlfors, Complex Analysis, Mc Graw-Hill, 1979.				
ED R	D.Sarason, Complex Function theory, Hindustan book Agency				
ESTI	Walter Rudin, Real and Complex analysis. McGraw-Hill Book Company				
UGG	• S. Punnusamy Foundation of complex Analysis, Narosa Publishing House				
S	1997				
	J.B. Conway Function of one complex Variable, Springer Verlag.				

.....

M.Sc. in MATHEMATICS FACULTY OF SCIENCE

• SECOND SEMESTER (EVEN SEMESTER)

	Course	Course Type	Course (Paper/Subjects)	Credits	Contact Hours Per Week			EoSE Duration (Hrs.)	
	Code								
					L	Т	Р	Thy	Р
	MSM 201	ССС	Advanced Abstract Algebra (II)	6	4	3	00	3	00
	MSM 202	CCC	Real Analysis(II}	6	4	3	00	3	00
	MSM 203	CCC	Topology(II)	6	4	3	00	3	00
	MSM S02 OSC		Research Methodology & Computer	6	4	3	00	3	00
		OSC	Application						
	MSM B01	ECC/CB	Environmental & Forest Laws						
	MSM B02	ECC/CB	Advanced Discrete Mathematics (II)	6	4	3	00	3	00
	MSM B03	ECC/CB	Algebraic Number Theory		4	5	00	5	00
	MSM B04	ECC/CB	Complex Analysis (II)						
	MINIMUM CRI SEMESTER IT	EDITS IN INE WOULD BE :	DIVIDUAL SUBJECT IS 6 AND IN COMPLETE 30	TOTAL= 30					
M.Sc. II Sem. Paper I ADV. ABSTRACT ALGEBRA II

Course Outcome

The students will be able

- CO1- To explain the fundamental concepts of adfvanced algebra such as Groups and rings and their role in modern mathematics and applied context.
- CO2- To demonstrate accurate and efficient use of algebraic techniques.
- CO3- To demonstrate capacity for mathematical reasoning through analysing "proving and explaining concepts from advanced algebra.
- CO4- To apply problem solving using advanced algebraic techniques applied to diverse situation in physics, engineering and other mathematical contexts.

	CO ₁	CO ₂	CO ₃	CO ₄
PO ₁	✓	\checkmark	✓	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark	\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅		\checkmark		\checkmark
PO ₆				
P07				
PO ₈	\checkmark	\checkmark	\checkmark	\checkmark
PO ₉			\checkmark	
PO ₁₀	\checkmark	\checkmark	\checkmark	\checkmark
PO ₁₁	\checkmark	\checkmark	\checkmark	

M.Sc. (MATHEMATICS) II SEMESTER					
COURSE CODE: MSM 201			COURSE TYPE	:: CCC	
COURS	E TITLE: ADV. A	BSTRACT ALGEBRA II			
	CREI	DIT:6	НС	OURS:90	
THEOF	XY: 6	PRACTICAL: 0	THEORY: 90	PRACTICAL: 0	
		MARKS	•	·	
	THEORY: 1	00 (30+70)	PRAC	TICAL: 00	
Schem	e of marks:				
i. 0	bjective type que	estions: Twelve question	is carrying 1 mark	s each to be asked	
ii. Sh	lort answer type	eu. questions: Five questio	ns carrying 3 mar	ks each to be set	
th	ree to be attemp	oted (Word limit 100 wo	rds).		
iii. M	iddle answer typ	be questions: Five questing of the second	ons carrying 6mai	rks each to be set	
iv. Lo	ng answer type (questions: Three question	ons carrying 11 ma	irks each to be set	
th	ree to be attem	pted (Word limit 750 wo	ords).		
18 hrs.	Noetherian and Artinian Modules and rings, Rings – Hilbert basis theorem. Wedderburn Artin theorem, Uniform Modules, Primary Modules, Noether – Lasker theorem.				
18 hrs.	Field theor Separable a	Field theory - Extension fields , Algebraic and transcendental extensions , Separable and inseparable extensions.			
18 hrs.	Normal extensions, Splitting field, Perfect fields, Finite fields, Primitive Elements, Algebraically closed fields, Automorphisms of extensions				
18 hrs.	Galios Field Solution of	and extensions , Fundamo polynomial equations by	ental theorem of Garadicals	alios theory,	
18 hrs.	Insolvabilit Canonical fo	y of the general equation orm , Generalised Jordan	of degree 5 by radi form over any fiel	cals , Rational d	

SUGGESTED READINGS	 P.B.Bhattacharya, S.K.Jain, S.R. Nagpaul: Basic Abstract Algebra, Cambridge University Press. I.N. Herstein: Topics in Algebra, Wiley Eastern Ltd. Quazi Zameeruddin and Surjeet Singh : Modern Algebra M. Artin : Algebra, Prentice – Hall of India , 1991 P.M.Cohn : Algebra ,Vol.I ,II, III,John Wiley & Sons, N. Jacobson: basic Algebra, Vols. I, II, W.H. Freeman S.lang , Algebra , 3rd edition, Addison –Wesley D.S. Malik, J.N. Modeson and M.K.Sen : Fundamentals of Abstract Algebra, Mc Graw – Hill ,International Edition,1997 K.B.Datta. : Matrix and linear Algebra, Prentice Hall of India Pvt. Ltd.,New Delhi,2000 S.K.Jain , A.Gunawardena and P.B.Bhattacharya : Basic Linear Algebra with MATLAB, Key College Publishing (Springer – Verlag) 2001 S. Kumaresan : Linear Algebra , A. Geometric Approach , Prentice - Hall of India. Vivek Sahai and Vikas Bist: Algebra, Narosa Publishing house, 1999.
-----------------------	--

M.Sc. II Sem. Paper II- Real Analysis II Course Outcome

The students will be able

- CO1- To understand how Lebesgue measure on R is defined.
- CO2- To understand the basic properties of measurable function.
- CO3- To understand how measure may be used to construct integrals.
- CO4- To know the basic convergence theorem for the Lebesgue integral.
- CO5- To understand the relation between Lebesgue differentiation and

Lebesgue integration.

	60	60	60	60	60
	CO_1	CO_2	CO_3	CO_4	CO_5
P0 ₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	✓		\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₆					
P07					\checkmark
PO ₈	\checkmark	\checkmark	\checkmark		\checkmark
PO ₉			\checkmark	\checkmark	\checkmark
PO ₁₀	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₁₁					

M.S	c. (MAT	HEMATICS)		II SEMESTER			
COL	COURSE CODE: MSM 202 COURSE TYPE: CCC						
	COURSE TITLE: REAL ANALYSIS II						
CREDIT:6					URS:90		
THE	EORY:	6	PRACTICAL: 0	THEORY: 90	PRACTICAL: 0		
		TUEODV. 1	MARKS	DD A C			
			00(30+70)	PKAU	IICAL: UU		
i.	eme of i Object 10 to Short :	marks: tive type que: be attempte answer type (stions: Twelve question ed. questions: Five questio	s carrying 1 marks	s each to be asked		
	three	to be attempt	ed (Word limit 100 wor	rds).			
iii.	Middle	e answer type	e questions: Five questined (Word limit 250 wo	ons carrying 6mar rds)	ks each to be set		
iv.	Long at three	nswer type q to be attemp	uestions: Three questio ted (Word limit 750 wo	ns carrying 11 ma rds).	rks each to be set		
s.		Lebesgue	outer measure , Measu	rable sets , Regula	rity, Measurable		
18 hr	functions, Borel and Lebesgue measurability						
.S.		Non – meas	urable sets , Integration	of Non – negativ	ite functions, The		
18 Hı		General int	egral, Integration of s	eries.			
18 hrs.	Measures and outer measures, Extension of a measure, Uniquness of Extension, Completion of a measure, Measure spaces, Integration with respect to a measure, Riemann and Lebesgue Integrals.						
l8 hrs.	The Four derivatives , Lebesgue differentiation theorem , Differentiation						
		and Integr	ation, Functions of Bo	unded variation			
18 hrs.		The L ^p - spa Minkowski ,	ces , Convex functions inequalities , Complete	, Jensen's Inequal eness of L ^p , Conve	ity, Holder and orgence in Measure		
	Almost uniform convergence.						

		1.Principle of Mathematical Analysis by W. Rudin
		2. Real Analysis by H.L.rudin
		3.T.M. apostol , Mathematical analysis ,Narosa Publishing House,New Delhi
		4.A.J. white,Real Analysis ,an introduction ,Addison – Wesley Publishing Co.
		Inc .1968.
		5.G.De Barra, Measure Theory and Integration ,Wiley Eastern Limited ,1981
		6.E. Hewitt and K.Stromberg.Real and Abstract Analysis ,Berlin,Springer.
GESTED	ADINGS	7.P.K.Jain and V.P. gupta ,Lebesgue Measure and Integration ,New Age International (P) Limited New Delhi.
SUG	RE/	8.I.P.Natanson,theory of Functions of a Real Variable ,Vol.I Fredrick Ungar Publishing Co. 1961
		9. H.Williamson , Lebesgue Integration ,Holt Rinehart and Winston ,Inc.New York.
		10. K. R. Parthasarathy ,Introduction to Probability and Measure , Macmillan Company of India Ltd. Delhi
		11.Inder K. Rana , An Introduction to Measure and Integration ,Narosa Publishing House ,Delhi.

M.Sc. II Sem. Paper III- Topology II Course Outcome

The students will be able

CO1-To know the definition and basic properties of connected spaces, product

spaces.

CO2- To gain knowledge about Tychonoffs product topology.

CO3- To familiar with the embedding and metrization theorems.

CO4- To understand the concept of Net and Filter.

	CO1	CO ₂	CO ₃	CO ₄
PO ₁	\checkmark	\checkmark	✓	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark	
PO ₃	\checkmark	\checkmark	✓	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅	\checkmark	\checkmark	\checkmark	\checkmark
PO ₆				
PO ₇				
PO ₈	\checkmark	\checkmark	✓	
PO ₉			\checkmark	
PO ₁₀	\checkmark	\checkmark	\checkmark	\checkmark
PO ₁₁				

M.S	M.Sc. (MATHEMATICS)			II SEMESTER		
COU	COURSE CODE: MSM 203			COURSE TYPE: CCC		
	COURSE TITLE: TOPOLOGY II					
		CRED	IT: 6	HO	URS:90	
TH	EORY:	6	PRACTICAL: 0	THEORY: 90	PRACTICAL: 0	
			MARK	S		
		THEORY: 10	00 (30+70)	PRAC	TICAL: 0	
Sch i. ii. iii. iv.	 Scheme of marks: Objective type questions: Twelve questions carrying 1 marks each to be asked 10 to be attempted. Short answer type questions: Five questions carrying 3 marks each to be set three to be attempted (Word limit 100 words). Middle answer type questions: Five questions carrying 6 marks each to be set three to be attempted (Word limit 250 words). Long answer type questions: Three questions carrying 11 marks each to be set 					
23 hrs.		Connected s Connected s	paces , Connectedness o paces.	n the real line, Compo	nents , Locally	
20 hrs.		Product Spa and its char Compactnes product spa	ces, Tychonoff Produ acterizations,Projection s and Product Spaces ces	ct topology in terms maps,Connectedness (Tychonoff Theore	of standard sub base and Product Spaces, em), Countability and	
17 hrs.	Embedding and Metrization, Embedding Lemma and Tychonoff embedding, The Urysohn's metrization theorem, Metrization theorems and Paracompactness – Local Finiteness ,The Nagata –Smirnov metrization theorem, Paracompactness, The Smirnov metrization theorem					
12 hrs.		Nets & Filter and their co versa. Ultra	r: topology and converg onvergence, Canonical filters and compactness	ence of nets, Hausdorf way of converting ne	fness and nets ,Filters ts to filters and vice	
18 hrs.		The fundam fundamenta the fundame	nental group and cove l groups, Covering space ental theorem of Algebra	ering spaces – Home es The fundamental gr	otopy of paths ,The roup of the circle and	

SUGGESTED READINGS	 James R. Munkres, Topology ,A First course,Prientice Hall of India Pvt.Ltd.,New Delhi. K.D. Joshi, Introduction to General Topology,Wiley Eastern Ltd. J.Dugundgi,Topology, Allyn and Bacon, (reprinted in India by Prentice Hall of India Pvt.Ltd.) George F.Simmons , Introduction to Topology and Modern Analysis,Mcgraw Hill Book Company)
	 6. J.L.Kelley ,General Topology ,Van Nostrand Reinhold Co. ,New York 7. L.steen and J.Seebach , Counter examples in Topology , Holt Rinehart and Winston ,New York. 8.W.Thron, Topologically Structures ,Holt,Rineharts and Winston ,New Delhi 9.Topology,by J.N.Sharma & J.P.Chauhan, Krishna PrakashanMedia (P) Ltd. Meerut.

M.Sc. II Sem.

Paper IV- RESEARCH METHODOLOGY & COMPUTER APPLICATION: BASICS

Course Outcome

After completing the course students will be able to demonstrate-

- CO 01- Knowledge of research process reading evaluating developing and analyzing the ideas/ thought in critical/ analytical manner.
- CO 02- literature reviews using print and online database of the subject and allied branches in perspectives of its inter -relation and so on.
- CO 03- competent use of MLA and APA format for citation of print and electronic materials available .
- CO 04- Potentials to identify explain, compare and prepare the key elements of research proposal and research report.
- CO 05- Compare and contrast qualitative and quantitative research paradigms and to explain the use of each in research.
- CO 06- The rationale for research ethics and importance of local processes for Institutional Review Board reviews for its rational improvisation.
- CO 07- How Educational research contributes to the objectives of doctoral programme and specific career in higher education.
- CO 08- Competent use of information received in general social welfare and issues relevant and focused in the context of humanity as whole and its positive solutions in larger interest be devised.

M.Sc.(MATHEMATICS) II SEMESTER						
COURSE	CODE: S02	COURSE TYPE:OSC				
	COURSE TITLE: RESEARCH METHODOLOGY & COMPUTER APPLICATION: BASICS					
CREDIT: 06 HOURS : 90						
THEORY	: 06	THEORY: 90				
MARKS :	100 THEORY:	70 CCA : 30				
Scheme	of marks:					
i. Ob	jective type questions: Twelve questions	carrying 1 marks each to be asked 10 to				
ii. Sh	ort answer type questions: Five question	s carrying 3 marks each to be set three to				
be	attempted (Word limit 100 words).					
iii. M	iddle answer type questions: Five questio	ns carrying 6marks each to be set three				
iv Lo	be attempted (word limit 250 words). ing answer type questions: Three question	ns carrying 11 marks each to be set three				
to	be attempted (Word limit 750 words).	is carrying 11 marks cach to be set three				
	CONCEPT OF PESEAPCH · Meaning and	characteristics of research. Stops in research process				
	Types of research - (i) Basic, applied and	action research (ii) Quantitative and gualitative research .				
S	Areas of research in concern discipline					
2 H						
11	SELECTION OF PROBLEM FOR RESEARC	H :Sources of the selection of the problem ,Criteria of the				
	types of hypotheses.	in proposar, meaning and types of variables, meaning and				
	TOOLS OF RESEARCH : Meaning and g	general information about construction procedure of (i)				
	Questionnaire, (ii) Interview, (iii) Psychol	ogical test, (iv) observation (v) Rating scale (vi) Attitute				
LS	scale and (VII) check list , Advantages and c	lisadvantages of above tools				
2 H	SAMPLING :Meaning of population ar	nd sample , Importance and characteristics of sample ,				
1	Sampling techniques - i) Probability sar	npling : random sampling, stratified random sampling,				
	systematic sampling, cluster sampling ii)	Non-probability sampling: incidental sampling, purposive				
	METHODS OF RESEARCH- Meaning and c	onducting procedure of following methods of research :				
H rs	Historical method, Survey method , Cas	e study , Causal comparative method , Developmental				
[5 F	methods , Experimental methods					
	TREATMENT OF DATA :					
	Level of measurements of data, S	Steps in treatment of data: editing, coding, classification,				
	tabulation, analysis and interpretat	ion of results				
Hrs	WRITING RESEARCH REPORT :					
15						
	Sections of report : Preliminary se	ection , Content section: various chapters , Supplementary				
	section: appendices, references, abs	stract , Format and style				

	Computer Fundamentals
	Computer System : Features, Basic Applications of Computer, Generations of computers.
15 Hrs	Parts of Computer System : Block Diagram of Computer System ; Central Processing Unit (CPU) ; Concepts and types of Hardware and Software, Input Devices - Mouse, Keyboard, Scanner, Bar Code Reader, track ball ; Output Devices - Monitor, Printer, Plotter, Speaker ; Computer Memory - primary and secondary memory, magnetic and optical storage devices.
	Operating Systems - MS Windows : Basics of Windows OS ; Components of Windows - icons, taskbar, activating windows, using desktop, title bar, running applications, exploring computer, managing files and folders, copying and moving files and folders ; Control panel : display properties, adding and removing software and hardware, setting date and time, screensaver and appearance ; Windows Accessories : Calculator, Notepad, WordPad, Paint Brush, Command Prompt, Windows Explorer.
	Office Software Package
Ś	Word Processing - MS Word : Creating, Saving, Opening, Editing, Formatting, Page Setup and printing Documents ; Using tables, pictures, and charts in Documents ; Using Mail Merge sending a document to a group of people and creating form, letters and label.
15 Hr	Spreadsheet - MS Excel : Opening a Blank or New Workbook, entering data/Function/ Formula into worksheet cell, Saving, Editing, Formatting, Page Setup and printing Workbooks.
	Presentation Software - MS Power Point : Creating and enhancing a presentation, modifying a presentation, working with visual elements, adding Animations & Transitions and delivering a presentation.

Agrawal, Y. P. (1988). **Better sampling : Concepts, Techniques and Evaluation.** New Delhi : sterling Publishers Private Ltd.Best, J. W. (1993).

Research in Education (6th ed.)New Delhi : Prentice-Hall of India Pvt. Ltd.

Broota, K. D. (1992) Experimental design in Behavioral Research (2nd ed.)

New Delhi : Wiley Eastern Limited.

Dasgupta, A. K. (1968). *Methodology of Economic Research*.Bombay: Asia Publishing House.Edwards, A. L. (1957). *Techniques of Attitude Scale construction*.New York : Appleton-Contury

Gall, M. D., Gall, J. P. and Borg, W. R. (2007). Educational Research : An introduction

(8th ed.) Coston : Allyn and Bacon.

Garrett, H. E. & Woodworth, R. S. (1969). Statistics in Psychology and Education.*Bombay :Vakils, Fecffer& Simons Pvt. Ltd.*

Goode, W. J. &Hatt, Paul K. (1952). Methods in Social Research.New York : McGraw-Hill.

Gopal, M. H. (1964). An Introduction to research Procedure in Social Sciences. Bombay : Asia Publishing House.

Hillway, T. (1964) Introduction to Research (2nd ed.) Noston : Houghton Miffin.

Hyman, H. H., et al. (1975). Interviewing in Social Research.

Chicago : University of Chicago Press.

Kerlinger, F. N. (1983) Foundation of Behavioural Research. (2nd Indian Reprint)

New York : Holt, Rinehart and Winston.

Kothari, C. R. (2007) Research Methodology: Methods & Techniques(3rd ed.)

New Delhi :WishwaPrakashan.Fundamentals Of Computers, Dr. P. Mohan, Himalaya Publishing House.

Microsoft First Look Office 2010, K. Murray, Microsoft Press.

Fundamental Of Research Methodology And Statistics, Y.K. Singh, New Age

International (P) Limited, Publishers.Practical Research Methods, Dr Catherine Dawson,

The Essence Of Research Methodology, Jan Jonker&BartjanPennink, Springer.

M.Sc. Semester-II

Paper-V: ENVIRONMENTAL AND FOREST LAWS

Course Outcomes

After completing the course the students will able to : -

- **CO 01-** The primary learning outcome is to sensitize the students towards human activities that adversely affect the environment and the need for regulation of such activities.
- **CO 02-** Students will develop a thorough understanding of practice and procedure followed by various environmental law enforcing agencies/bodies.
- **CO 03-** Students will be able to pursue environmental litigation before the National Green Tribunal and assist the Tribunal as a researcher or in any other capacity.
- **CO 04-** Students will be able to assist industries and projects in obtaining environmental clearance and compliances with other environmental laws.

M.S	c. (MA'	ATHEMATICS) II S	EMESTER				
COU	JRSE C	CODE: MSM B01 COURSE	COURSE TYPE: ECC/CB				
		COURSE TITLE: ENVIRONMENTAL AND F	OREST LA	WS			
CREDIT: 6		CREDIT: 6	HOU	RS: 90			
TH	EORY:	: 6 PRACTICAL: 0 THEORY	:90	PRACTICAL: 0			
	MARKS						
		THEORY:100 (30+70)	PRACT	ICAL: 00			
Sch	eme of	of marks:					
i.	Objec 10 t	ective type questions: Twelve questions carrying to be attempted.	; 1 marks	each to be asked			
ii.	Short	rt answer type questions: Five questions carryin	ıg 3 marks	s each to be set			
	three	e to be attempted (Word limit 100 words).					
iii.	Midd	dle answer type questions: Five questions carry	ing 6mark	s each to be set			
:	three	ee to be attempted (Word limit 250 words).	ng 11 man	ka aaah ta ha aat			
IV.	three	e to be attempted (Word limit 750 words)	ig 11 illai i	ks each to be set			
	three	to be attempted (word milt 750 words).					
		International Environmental laws : Evolution and	d developn	nent of International			
		Environmental laws with reference to Sto	ockholm ¹ (Conference, Nairobi			
rs.		Declaration ,Rio Conference, Rio+5 and Rio+10 ,e	etc.Global e	environmental issues			
8 h		and International laws to control Global warmi	ng Ozone d	lepletion , Acid rains			
-		, hazardous waste,CITES etc. ,Role of UN author	orities in p	protection of Global			
		Environment , Multinational authorities and agre	ements, fu	ture of International			
		Fnvironmental Acts Rules and Notifications The	following	environmental Acts			
		/Rules will be discussed in details :the rest of th	he acts .rul	es. and notifications			
		will be referred to :					
s.		(a) Water (Prevention & Control of Pollution) Act and the corresponding					
hr		Rule.					
18		(b) Air (Prevention & Control of Pollution) Act and the corresponding rule.					
		(c) Environment (Protection) Act and Rule (d) Hazardous Waste (Management & Handling) Rules					
		(e) Manufacture Storage and Import of Hazardous Chemicals Rules					
		(f) Public Liability Insurance Act and Rule					
		Environmental laws in India : Policy and laws	, Constitu	tional and statutory			
Ś		laws in India :Doctrine Principles of State Po	licy ,Fund	amental Duties and			
hr:		Funddamental rights and Panchayati Raj Syste	m.Statutor	ry protection of the			
18		Human Environment: such as Indian Penal Cod	le ,Factorie	Es Act, Motor Vehicle			
		and 1988 Forest Conservation Act - 1980	batement,	Folest Policy -1952			
		Important Judgements and Cases: Discussion of	n landmar	k Sriram Chamicals			
8	rs.	Oleum Leak Case, Ganga Action Plan case Bh	opal Gas L	eak case, etc. Green			
, ,	q	Benches	opur duo 2				
		Objectives of the Anti Pollution Acts Institutio	nal mecha	nism ceated under			
		these acts and role and ccontribution in comb	ining envi	ronmental pollution			
S.		.The role of courts requirements of Rule 14 for	or Environ	mental Audit under			
3 hr		Environmental protection Act 1986 Rule & reg	ulation &	guidelines given for			
16		disposal of hazardous waste ,municipal and sol	lid waste &	& bio-medical waste			
		Framework : Kule and regulations of Central & State pollution control boards for Seferuard for E	tate Goveri	nment and Central &			
1		state pollution control boards for Safeguard for E	mvironmei	inal Protection			

	1) Enviromental Laws-Mhaskar A.K.
	2) Environmental Laws & politics in India- Shyam Diwan & Armin
	Rasencranz ,Oxford University Press
	3) Environmental Protection & Laws, Acts, Rules, Guidelines, complaints
GS	& Standard , R.K. Trivedy, Envir.Media
ESTED READIN	 Environmental Pollution & Development : Law & Policy ,Chandra Pal Mittal Pubs.
	5) Introduction to the Constitution of India ,D.D.Basu Wadhwa and Company Law Publisher.New Delhi
	6) Principles of International Environmental Laws –P.sands ,Cambridge University Press London
SUGG	7) Environmental Legislation in India ,S.K.Choudhary, Oxford IBH ,New Delhi
	8) Forest Lawswith explanation ,S.S. Negi,Bishen Singh Mahendrapal Singh Dehradun

M.Sc II Semester Paper V- Advanced Discrete Mathematics II Course Outcome

The students will be able

.

- CO1- To demonstrate different traversal methods for trees and graphs.
- CO2- To solve model questions in computer science using trees and gaphs.
- CO3- To gain knowledge about Finite state machine.
- CO4- To formulate and solve problems from diverse areas using application specific analysis and /or graph model.
- CO5- To demonstrate the ability to write and evaluate a proof.

	CO_1	CO ₂	CO ₃	CO_4	CO ₅
P01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
P0 ₅		\checkmark	\checkmark		
PO ₆	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
P07	\checkmark				\checkmark
PO ₈	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO9			\checkmark		\checkmark
PO ₁₀	\checkmark	\checkmark		\checkmark	
PO ₁₁		\checkmark	\checkmark	\checkmark	\checkmark

M.Sc. (MATHEMATICS) II SEMESTER						
COU	JRSE CO	DE: MSM B02		COURSE TYPE: ECC/	'CB	
		COURS	E TITLE: ADV.DISCRETI	E MATHEMATICS (I	I)	
		CREDI	Г: 6	HOU	JRS:90	
TH	EORY:	6	PRACTICAL:0	THEORY: 90	PRACTICAL: 0	
			MARKS			
		THEORY:100	0(30+70)	PRACT	ICAL: 00	
Sch	eme of	marks:				
i.	i. Objective type questions: Twelve questions carrying 1 marks each to be asked					
	10 to	be attempted	1.			
ii.	Short	answer type q	uestions: Five question	is carrying 3 marks	s each to be set	
	three	to be attempte	d (Word limit 100 wor	ds).		
iii.	Middl	e answer type	questions: Five question	ons carrying 6mark	s each to be set	
:	three	to be attempt	ea (word limit 250 Wol ostions: Three guestics	asj.	ra agah ta ha gat	
IV.	three	to be attempt	estions: Three question ed (Word limit 750 wor	is callying 11 mail ds)	ks each to be set	
	three	to be attempt		u0j1		
		Graph Theory	- Definition of (Undire	cted) Graphs, Paths	, Circuits , Cycles , &	
rs.		Subgraphs ,Ii	nduced subgraphs ,Deg	ree of a vertex, C	onnectivity ,{Planar	
8 h		Graphs and	their properties, Trees	,Euler's Formula f	or connected planar	
1		(statement on	lete & Complete Dip	artite Graphs , Ku	ittowski s Theorem	
		(statement on	ly j and its use.			
Ś		Spanning Tra	ac Cut cota Eundomonta	l Cut coto and Cuo	a Minimal Spanning	
hr		Trees and K	ruskals Algorithm Mat	riv Representations	of Granhs Fuler's	
18		Theorem on t	he Existence of Eulerian	Paths and Circuits.	of draphs, Eulers	
s.						
hrs		Graphs .In De	egree and Out degree of	a Vertex, Weighted	l undirected Graphs,	
18		DIJKSTRA'S Algo	Troe Troversels	ity & Marshall's Alg	oritm,Directed Trees	
		,search frees,	Thee Traversals			
s.		Tet and the	0			
hr		Introductory	Lomputability Theory - I	inite State Machine	es and their	
18		Machines Ho	nomorphism	ice of Finite State M	achines, keaucea	
		Finite Automa	ita Accentore Non det	rministic Finito Au	tomata and	
Ś		equivalence o	f its nower to that of Det	erministic Moore an	d Mealy Machines	
3hi		Turning Mach	ine and Partial Recursive	e Functions	a roury machines	
18						

	1) Elements of Discrete Mathematics By C.L.Liu
	2) Graph Theory and its application By N.Deo
	3) Theory of Computer Science By K.L.P.Mishra and N. Chandrashekaran
	4) J.P.Tremblay & R.Manohar, Discrete Mathemmatical Structures with
	applications to Computer Science ,McGraw –Hill Book Co. 1997
S ED	5) J.L. Gersting ,Mathematical Structures for Computer science,Computer
SUGGESTF READING	Science Press,New York
	6) Seymour Lepschutz ,Finite Mathematics edition,McGraw Hill Book
	Company ,New York
	7) S. Wiitala, Discrete Mathematics – A Unified Approach, McGraw – Hill
	Book Co.
	8) J.E. Hopcroft and J.D. Ullman ,Introduction to Automata
	Theory,Language & Computation,Narosa Publishing House.

M.Sc. II Semester Paper V- Algebraic Number theory Course Outcome

The students will be able

- CO1-To learn about the arithmetic of algebraic number fields.
- CO2- To prove theorems about integral bases and about unique factorisation

into ring and fields.

- CO3-To understand the concept of algebraic numbers and algebraic integers.
- CO4- To understand how to factorise an algebraic integer into irreducible.
- CO5- To understand how to find the ideals of an algebraic number ring.

	CO ₁	CO ₂	CO ₃	CO ₄	CO ₅
P0 ₁	✓	\checkmark	✓	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅	\checkmark				
PO ₆			\checkmark		
PO ₇		\checkmark	✓	\checkmark	\checkmark
PO ₈	✓	\checkmark	✓	\checkmark	\checkmark
PO ₉		\checkmark	\checkmark	\checkmark	\checkmark
PO ₁₀	\checkmark	\checkmark		\checkmark	
PO ₁₁		\checkmark		\checkmark	\checkmark

M.Sc. (MAT	THEMATICS)	II SEMESTER	
COURSE CO	DDE: MSM B03	COURSE TYPE: ECC	/CB
	COURSE TITLE: ALGEBRAI	C NUMBER THEORY	
	CREDIT:6	HOU	RS:90
THEORY:	6 PRACTICAL: 0	THEORY: 90	PRACTICAL: 0
	MARKS		
	THEORY: 100 (30+70)	PRACT	ICAL: 0
		•	
18 hrs.	ALGEBRAIC BACKGROUND – Rings and Fields –Factorization of F Polynomials , Modules , Free Abelia	olynomials ,Field Exte 1 Groups	nsions , Symmetric
18 hrs.	ALGEBRAIC NUMBERS Algebraic numbers , Conjugates and Integral Bases, Norms and Traces ,R	Discriminants ,Algebra ngs of Integers	ic Integers,
18 hrs.	QUADRATIC AND CYCLOTOMIC FIEL Quadratic Fields and Cyclotomatic Fi Trivial Factorization : Factorization factorization into irreducible.	DS elds : Factorization int into irreducible,Exam	o Irreducible , ples of non- unique
18 hrs.	Prime Factorization - Euclidean ,Consequences of unique factorizatio	n Domains ,Euclidea n ,The Ramanujan – Na	n Quadratic fields agell Theorem
18 hrs.	Prime Factorization of Ideals ,The no in Cyclotomic Fields.	rms of an Ideal,Non –ı	unique Factorization
SUGGESTED READINGS	Steward and D. Tall, Algebraic Numb A.K.peters Ltd. Natrick ,Mass 2002	er Theory and Fermat'	s Last Theorem

M.Sc. II Semester Complex Analysis –II Course Outcome

The students will be able

- CO1-To compute definite integrals using residue theorem.
- CO2-To understand the concept of Analytic continuation and properties of

Solutions to complex differential equation.

- CO3- To understand the concept of Entire function.
- CO4- To know the concept of Hadmard three circle theorem, Hadmard

factorization theorem.

CO5- To apply the problem –solving using complex analysis techniques applied to diverse situations in physics, engineering.

	CO1	CO ₂	CO ₃	CO ₄	CO ₅
P0 ₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅					
P0 ₆					
P07					\checkmark
PO ₈	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₉			\checkmark		\checkmark
PO ₁₀	\checkmark	\checkmark		\checkmark	
PO ₁₁					

M.Sc. (MAT	THEMATICS)	II SEMESTER		
COURSE C	ODE: MSM B04	COURSE TYPE:ECC/CB		
	COURSE TITLE: COMPLI	EX ANALYSIS -II		
	CREDIT: 6	HOURS:90		
THEORY:	6 PRACTICAL: 0	THEORY: 90 PRACTICA	L: 0	
	MARKS			
	THEORY:100 (30+70)	PRACTICAL : 00		
Scheme of marks:				
i. Objec	tive type questions: Twelve question	is carrying 1 marks each to be a	asked	
10 t ji Short	o be attempted.	ns corrying 2 marks each to be	cot	
n. Short three	to be attempted (Word limit 100 wo	rds).	301	
iii. Midd	le answer type questions: Five questi	ons carrying 6marks each to be	set	
three	e to be attempted (Word limit 250 wo	ords).		
iv. Long a	answer type questions: Three question	ons carrying 11 marks each to b	e set	
three	to be attempted (Word limit 750 wo	ords).		
	Desidues Couchy's residue theorem 1	Evolution of integrals, Dranches	of money	
rs.	valued function with special reference	to arg z Log z and z	or many	
8 h	valued function with special reference			
-				
æ vi	Analytic Continuation ,Uniqueness	of analytic continuation along	a curve	
h H	,Power series method of analytic contr	nuation, schwartz Reflection Prin	icipie	
	Harmonic function on a disc ,Harnack'	s Inequality and theorem, Canon	ical	
18 nrs	product ,Jensen's Formula,Poisson –Je	nson formula, Hadmard's three ci	rcle	
–	theorem.			
~ ~	Order of an entire function, Exponent of Convergence ,Borel's Theorem,			
18 hr:	Hadmards Factorization Theorem			
	The range of an analytic function Dis-	h'a Theorem The Little Discuss the	0.000	
æ vi	Montel Caratheodary and The Great Pi	in S Theorem, The Little Picard the	orem,	
₽ Ē	Montel Caratheodary and The dreat Th			
	1) L.V.Ahlfors ,Complex Analysis	McGraw Hill ,1979		
D NI	2) D.Sarason ,Complex Function	۲, Hindustan Book Agency,	elhi.	
AD	3) Walter Rudin ,Real and Comp	lex analysis ,McGraw –Hill Book c	ompany	
RE	1996	of Franchismen O food Hatter	D	
ED	4) E.C. Htcnmarsn , Ine Theory	of Functions ,Oxford Universit	y Press	
ST	5) S.Ponnusamy Foundations of	f complex Analysis Narosa Pu	blishing	
GE	House,1997		8	
SUG	6) J.B.Conway, Function of One Co	omplex Variable ,Springer Verlag		
•				

• M.Sc. in MATHEMATICS FACULTY OF SCIENCE

• THIRD SEMESTER (ODD SEMESTER)

	Course Code	Course Type	Course (Paper/Subjects)	Credits	Contact Hours Per Week			EoSE Duration (Hrs.)	
					L	Т	Р	Thy	Р
	MSM 301	CCC	Integration Theory and Functional Analysis (I)	6	4	3	00	3	00
	MSM 302	CCC	Partial Differential Equations & Mechanics (I)	6	4	3	00	3	00
Ī	MSM 303	CCC	Operations Research (I)	6	4	3	00	3	00
	MSM S03	OSC	Intellectual Property Law	6	4	3	00	3	00
ľ	MSM C 01	ECC/CB	Tribal Studies						
	MSM C 02	ECC/CB	Mathematical Modelling	6	4	3	00	3	00
	MSM C 03	ECC/CB	Fluid Dynamics	-			-	-	-
	MSM C 04	ECC/CB	Numerical Analysis I						
	MINIMUM CREDITS IN INDIVIDUAL SUBJECT IS 6 AND IN COMPLETE SEMESTER IT WOULD BE 30								

M.Sc.III Sem.(Maths) Integration Theory and Functional Analysis I Course Outcome

The students will be able

- CO1- To acquire basic knowledge of measure and integration theory.
- CO2- To analyze measurable set and Lebesgue measure.
- CO3- To analyze Lebesgue –Stieltzes integral and Fubini's theorem.
- CO4- To understand the knowledge of normed linear space in functional analysis.
- CO5- To understand the concept of weak convergence and bounded linear transformation.

	CO1	CO ₂	CO3	CO_4	CO ₅
P01	\checkmark	\checkmark	\checkmark	✓	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark
PO ₃	✓	\checkmark	✓	✓	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅				✓	
P06	\checkmark	\checkmark			
PO ₇					
PO ₈					
PO ₉	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO10	\checkmark	\checkmark		\checkmark	
PO ₁₁					

M.Sc. (MATH	EMATICS)		III SEMESTER		
COURSE COD	E: MSM 301		COURSE TYPE: C	CCC	
Course Tit	tle: Integra	ation Theory and I	Functional Anal	ysis (I)	
	CREDI	Т:6	НОЦ	JRS:90	
THEORY: 6		PRACTICAL: 0	THEORY: 90	PRACTICAL: 0	
		MARKS			
	THEORY: 10() (30+70)	PRACT	ICAL: 00	
Scheme of m	Scheme of marks:				
i. Objectiv	ve type quest	ions: Twelve questions	carrying 1 marks e	each to be asked	
10 to ii Short ar	be attempted	l. Jestions: Five question	s carrying 3 marks	each to he set	
three to	be attempte	d (Word limit 100 word	ds).	each to be set	
iii. Middle	answer type	questions: Five questio	ns carrying 6mark	s each to be set	
three to	be attempte	ed (Word limit 250 wor	ds).	ra aaah ta ha aat	
three to	be attempte	ed (Word limit 750 wor	ds).	s each to be set	
	Measure Tl	heory:	,		
ls.	Signed meas	sure. Hahn decompositio	n theorem, mutually	singular	
8 hi	measures. R	adon-Nikodym theorem	. Labesgue decompos	sition. Riesz	
7	representat	ion theorem. Extension t	heorem (Caratheodo	ory).	
	Lebesgue-St	tieltjes integral, product	measures, Fubini's th	neorem.	
hrs	Differentiat	ion and Integration. Deco	omposition into abso	lutely continuous	
18	and singular	r parts.			
	Bairo coto I	Paira maggura continua	is functions with con	nnact sunnort	
ý	Regularity c	of measures on locally con	mpact spaces.	npact support.	
3 hr	Integration	of continuous functions	with compact suppor	rt, Riesz-	
18	Markoff the	orem.			
	Functional	Analysis			
	Normed line	ear spaces. Banach space	s and examples. Ouo	tient space	
Irs.	of normed l	inear spaces and its com	pleteness, equivalent	t norms.	
[8]	Riesz Lemm	a, basic properties of fin	ite dimensional norn	ned linear spaces	
	and compac	tness.			
	Weels			n o veno o d	
i.	weak conve	ergence and bounded line	ear transformations,	normea	
hrs		s of Dounded Inteal trails	siormations, uuai spa	aces with examples.	
18					

	1. P.R. Halmos, Measure Theory, Van Nostrand, Princeton, 1950.
	2. B.Choudhary and S.Nanda, Functional Analysis with Applications. Wiley
	Eastern Ltd. 1989.
	3. H.L. Royden, Real Analysis, Macmillan Publishing Co. Inc., New York, 4'h
	Edition, 1993.
	4. S.K. Berberian, Measure and integration, Chelsea Publishing Company,
	New York, 1965.
	5. G. de Barra, Measure Theory and Integration, Wiley Eastern Limited, 1981.
	6. P.K. Jain and V.P. Gupta, Lebesgue Measure and Integration, New Age
	International (P) Limited, New Delhi, 2000.
ED	7. Richard L. Wheeden and Antoni Zygmund, Measure and Integral : An
LSE	Introduction to Real Analysis, Marcel Dekker Inc. 1977.
GGH	8. J.H. Williamson, Lebesgue Integration, Holt Rinehart and Winston, Inc.
RI	New York. 1962.
	9. T.G. Hawkins, Lebesgue's Theory of Integration: Its Origins and
	Development, Chelsea, New York, 1979.
	10. K.R. Parthasarathy, Introduction to Probability and Measure, Macmillan
	Company of India Ltd., Delhi, 1977.
	11. R.G. Bartle, The Elements of Integration, John Wiley & Sons, Inc. New
	York, 1966.
	12. Serge Lang, Analysis I & II, Addison-Wesley Publishing Company, Inc.
	1967.
	13. Inder K. Rana, An Introduction to Measure and Integration, Narosa
	Publishing House, Delhi, 1997.

M.Sc.III Sem.(Maths) Partial Differential Equations and Mechanics (I) Course Outcome

The students will be able

- CO1- To understand the basic properties of standard PDE's.
- CO2- To solve some problems of Green function and Harmonic function.
- CO3- To find the solution of Laplace and Poisson equation.
- CO4- To analyze the fundamental solution and properties of Heat equation and Wave equation.

CO5-To demonstrate accurate and efficient use of Fourier, Laplace and

Legendre transform and their application in the theory of PDE's.

	CO1	CO ₂	CO ₃	CO4	CO ₅
P01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅				\checkmark	
PO ₆	\checkmark	\checkmark	\checkmark		
PO ₇					\checkmark
PO ₈	\checkmark	\checkmark	\checkmark		
PO9			\checkmark		
PO ₁₀	\checkmark	\checkmark		\checkmark	
PO ₁₁					

M.Sc. (MATHEMATICS) III SEMESTER					
CO	COURSE CODE: MSM 302 COURSE TYPE: CCC				
	COURSE TITLE: Partial Differential Equations and Mechanics (I)				
		CREDI	Γ:6	HOU	RS:90
TH	EORY: 6		PRACTICAL: 0	THEORY: 90	PRACTICAL: 0
			MARKS		
		THEORY: 10	0(30+70)	PRACT	ICAL: 00
Sch	eme of ma	irks:		I	
i.	Objectiv 10 to b	e type quest e attempted	ions: Twelve questions	carrying 1 marks e	each to be asked
ii.	Short an	swer type qu	estions: Five question	s carrying 3 marks	each to be set
iii.	three to Middle a	be attempted inswer type (uestions: Five questio	usj. ns carrving 6marks	s each to be set
	three to	be attempte	d (Word limit 250 wor	ds).	
iv.	Long ans	wer type que	estions: Three question	s carrying 11 mark	s each to be set
	three to	be attempte	d (Word limit 750 wor	ds).	
rs.		Laplace's E	quation -Fundamental S	olution, Mean value	Formulas,
8 h		Harmonic F	unctions, Green's Function	on, Energy Methods.	
1					
		Heat Equat	ion-Fundamental Solution Solution Solutions	on, Mean Value Form oods	iula,
Hrs.		rioperties (i bolucions, Energy mee	1045.	
18]		Wave Equa	tion-Solution by Spheric	cal Means, Non-homo	ogeneous Equations,
		Energy Met	nous.		
		Nonlinear F	irst Order PDE, Complet	e Integrals, Envelope	S
nrs.		Characteris	tics, HamiltonJacobi Equ	ations (Calculus of Va	ariations,
18]		solutions Se	DDEJ, Conservation Law	s ,Representation of	
		501410115,50	perution of variables		
8	ې. 	Laplace and	Fourier transforms and	their applications,Le	egendre Transform.
,	Ч				
		Gravitation	Attraction & Potentia	l of rod, disc, spheric	al shells and
hrs		sphere.Surfa	ace integral of normal at	traction (application	& Gauss' theorem).
18					

		1. L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics,Volume 19, AMS, 1998.
		2. F. Gantmacher, Lectures in Analytic Mechanics, MIR Publishers, Moscow, 1975.
		3. R. C. Mondal, Classical Mechanics, Prentice Hall of India
		4. S. L. Loney, An Elementary Treatise on Statics, Kalyani Publishers, New Delhi, 1979.
		5. Books on Partial differential equation by 1.N. Sneddon, F. John, P. Prasad and R. Ravindran, Amarnath etc.
LED	NGS	6. A.S. Ramsey, Dynamics Part II, The English Language Book Society and
ES	DIN	Cambridge University Press, 1972.
SUGG	REA	7. H. Goldstein, Classical Mechanics (2nd edition), Narosa Publishing House, New Delhi.
		8. I. M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice Hall.
		9. Narayan Chandra Rana & Pramod Sharad Chandra Joag, Classical Mechanics, Tata McGraw Hill, 1991.
		10. Louis N. Hand and Janet D. Finch, Analytical Mechanics, Cambridge University Press, 1998.
		11. A.S. Ramsey, Newtonian Gravitation, The English Language Book Society and the Cambridge University Press.

M.Sc. III Sem.(Maths) Operation Research I Course Outcome

The students will be able

- CO1- To understand the application of OR and frame a LP Problem with solution.
- CO2- To formulate some real life problem into linear programming problem.
- CO3- To use simplex method to find an optimal solution.
- CO4- To find optimal solution of transportation problem and assignment problem.
- CO5- To formulate and solve parametric, goal programming.

	CO1	CO ₂	CO ₃	CO ₄	CO ₅
PO ₁	\checkmark	\checkmark	✓	✓	\checkmark
PO ₂	\checkmark	\checkmark	✓	✓	\checkmark
PO ₃	\checkmark	\checkmark	✓	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅				✓	
PO ₆	\checkmark	\checkmark			
PO ₇					\checkmark
PO ₈	\checkmark	\checkmark	\checkmark		
PO ₉			\checkmark		
PO ₁₀	\checkmark	\checkmark		\checkmark	
PO ₁₁	\checkmark	\checkmark	\checkmark	\checkmark	✓

M.Sc. (MATHEMATICS) III SE		III SEMESTER			
CO	COURSE CODE:MSM 303COURSE TYPE:CCC				
	COURSE TITLE: OPERATION RESEARCH I				
CREDIT: 6			Γ: 6	HOU	JRS:90
TH	EORY: 6		PRACTICAL: 0	THEORY: 90	PRACTICAL: 0
			MARKS		
		THEORY: 100) (30+70)	PRACT	FICAL: 0
Sch i. ii.	 Scheme of marks: i. Objective type questions: Twelve questions carrying 1 marks each to be asked 10 to be attempted. ii. Short answer type questions: Five questions carrying 3 marks each to be set 				
iii.	Middle	answer type	auestions: Five questio	ns carrying 6marks	s each to be set
	three to	be attempte	ed (Word limit 250 wor	ds).	beach to be bet
iv.	Long ans	swer type qu	estions: Three questior	s carrying 11 marl	ts each to be set
	three to	be attempte	ed (Word limit 750 wor	ds).	
23 hrs.		Operations solution of convex and	Research and its Scope. I Linear Programming Pro concave functions.	Problem formulation oblem, Some propert	& Graphical ies of convex sets,
		Solution of	L.P.P. – Simplex method,	Two phase method,	
20 hrs		Big –M metl	nod,		
17 hrs.		Duality in L	inear Programming -Dua	l Simplex Method. Se	ensitivity Analysis.
12 hrs.		Parametric Programmi	Linear Programming, Up ng.	oper Bound Techniqu	ue, Linear Goal
18 hrs.		Transporta	tion and Assignment Pro	blems.	

	1. F.S. Hillier and G.J. Lieberman. Introduction to Operations ResBareft (SixthEdition), McGraw Hill International Edition, Industrial Engineering Series, 1995.
	 G. Hadley, Linear Programming, Narosa Publishing House, 1995. G. Hadly, Nonlinear and Dynamic Programming, Addison-Wesley, Reading
SUGGESTED READINGS	 Mass. 4. H.A. Taha, Operations Research - An introduction, Macmillan Publishing Co., Inc., New Yark. 5. Kanti Swarup, P.K. Gupta and Man Mohan, Operations Research, Sultan Chand & Sons, New Delhi 6. S.S. Rao, Optimization Theory and Applications, Wiley Eastern Ltd., New Delhi. 7. Prem Kumar Gupla and D.S. Hira, Operations Research-An Introduction. S.
	Cliand & Company Ltd., New Deini.

M.Sc.III Sem.(Maths)

Intellectual Property Law

Course Outcome

After the completion of the course, students will be able to understand:

- CO-01:- The concept and development of all forms of I.P.R.
- CO-02:- Distinguish and explain various forms of I.P.R
- CO-03:- Identify criteria's to fit one's own intellectual work in particular forms of I.P.R
- CO-04:- Apply statutory provisions to protect particular forms of I.P.R
- CO-05:- Apply the concept and forms of I.P.R in research field.

COURSE CODE: MSM S02 COURSE TYPE: OSC				
COURSE TITLE: Intellectual Property Law				
	CREDIT:6	HOURS: 90		
THEORY: 6	PRACTICAL: 0	THEORY: 90 PRACTICAL: 0		
	MARKS			
Т	HEORY: 100 (30+70)	PRACTICAL: 00		
Scheme of ma	rks:			
i. Objective	e type questions: Twelve questions	carrying 1 marks each to be asked		
10 to b	e attempted.			
II. Short and three to l	wer type questions: rive question	s carrying 3 marks each to be set		
iii. Middle a	nswer type questions: Five question	ns carrying 6marks each to be set		
three to	be attempted (Word limit 250 wor	ds).		
iv. Long answ	wer type questions: Three question	s carrying 11 marks each to be set		
three to	be attempted (Word limit 750 wor	ds).		
	Introduction, Nature, Basic	c Concepts and International		
50	Conventions :			
hr:	intellectual property right Type	s of intellectual property leading		
12	international instrument concerning	protection of IP:		
	The Berne Convention (1971), Rom	e convention (1961)		
	Trade Related intellectual property	agreement" (TRIPS)		
s.	Law of Copyright			
hr	Definition, Subject matter of copyright, Ownership of Copyright, Term			
Copyright, Rights of Owner, Assignments and Licenses, Infringement				
	Law of Patents			
	Meaning , Criteria for obtaining par	tents, Novelty, Utility, Non-obviousness,		
hrs	Non patentable inventions, Procedure for registration, Term of patent,			
121	Rights of patent, Basic concept of co	mpulsory license and government use of		
	patent	and of Infringenment		
	Infringement of patent, Remedies in			
	Meaning of mark trademark Cate	pories of Trademark- Conventional and		
nrs.	Non-conventional Marks, Concept of	of distinctiveness, Absolute and relative		
44	grounds for refusal, Doctrine of	honest concurrent use , Procedure of		
7	registration of trademarks and	Term of protection, Assignment and		
	Licensing Infringement and passing	goff		
	Design and other forms of Geog	graphical Indication (GI)		
	1.Designs, Meaning of Design Protection, Concept of original design, Term of			
Ś	Protection			
hr	Z.Geographical Indication, Meanin	ig of GI, Difference between GI and		
18	Concept of Authorized user			

		1. G.B.Reddy, Intellectual Property Rights and Law, Gogia Law Agency,
		Hyderabad.
		2. S.R.Myneni, Intellectual Property Law, Eastern Law House, Calcutta
		3. P Narayanan Intellectual Property Rights and Law (1999), Eastern
		Law
		House, Calcutta, India
ED	S	4. VikasVashistha, Law and Practice of Intellectual Property,(1999)
L	Ň	Bharat
Ë	DI	Law House, New Delhi.
U U U	EA	5. Comish W.R Intellectual Property, 3rded, (1996), Sweet and Maxwell
SU	RI	6. P.S. Sangal and Kishor Singh, Indian Patent System and Paris
		Convention,
		7. Comish W.R Intellectual Property, Patents, Copyrights and Allied
		Rights,
		(2005)
		8. Bibeck Debroy, Intellectual Property Rights, (1998), Rajiv Gandhi
		Foundation.
M.Sc.III Sem.(Maths) TRIBAL STUDIES Course Outcome

After completing the course the students will able to : -

CO1- Describe the need and importance of Tribal Studies, since tribes

constitute a significant portion of Indian Population.

- **CO2** Identify major tribes of India, with their racial, lingual, and geographical classification.
- **CO3** Enumerate various issues posing threat to the tribal existence, Identity development.
- **CO4**-Critically describe various Laws, Policies, programmes and

Constitutional provisions corresponding to tribal development in India.

- **CO5**-Evaluate various welfare agencies and the programmes related to Scheduled Tribes in the fields of education, employment and social justice.
- **CO6**-Create a deliberate interest in getting involved with the activities initiated for the improvement of the lives of tribals.

M.Sc. (MA	THEMATICS)		III SEMESTER		
COURSE C	ODE: MSM CO	1	COURSE TYPE: ECC	CB	
		COURSE TITLE: TRIE	BAL STUDIES		
	CRED	IT: 6	HOU	IRS: 90	
THEORY:	6	PRACTICAL: 0	THEORY: 90	PRACTICAL: 0	
		MARKS	I		
	THEORY:10	00 (30+70)	PRACT	ICAL: 00	
 Scheme of marks: Objective type questions: Twelve questions carrying 1 marks each to be asked 10 to be attempted. Short answer type questions: Five questions carrying 3 marks each to be set three to be attempted (Word limit 100 words). Middle answer type questions: Five questions carrying 6 marks each to be set 					
thre iv. Long three	e to be attemp answer type q e to be attemp	ted (Word limit 250 wo uestions: Three questio ted (Word limit 750 wo	rds). ons carrying 11 mar ords).	ks each to be set	
18 hrs.	Tribal Studies : Meaning, Nature, Scope, Need & importance of tribal studies. Meaning, Definition & characteristics of Tribe, Caste & Race				
18 hrs.	 Scheduled Tribe in India: Population Composition of tribal, classification of Indian Tribe – Racial, Lingual, Geographical, Cultural. Some Major Tribes in India: Santhal, Khasi, Munda, Bhils. Some Major Tribes in Central India : Gond, Baiga, Bharia, Korkus. 				
18 hrs.	Illiteracy: Poverty, Indebt ness, Unemployment, migration & ExploitationEnvironmental & Degradation.Problem of Health and sanitation :Prostitution, Culture Decay due to assimilation. Replacement & Rehabilitationof Tribal population.				
18 hrs.	Welfare-Com period. Const Reservation I	cept, Characteristics: T itutional provision & safe Policy.	ribal Welfare in post e guard after indeper	independence ndence, Legislation &	
18 hrs.	Tribal Development Programs for Scheduled Tribes : Medical, Education, Economy, Employment & Agriculture Evaluation of ProgramsTribal Welfare & Advisory Agencies in India : Role of NGO's in tribal development, Role of Christian missionaries in tribal welfare & development. Tribal Welfare Administration.				
SUGGESTED READINGS	1. Triba 2. Books 3. Books	l Development In India (O s on Tribal studies by PK E s on 'Tribal Studies' by W.(<i>rissa)</i> by Dr. Taradutt Bhowmik G. Archer	t	

M.Sc. III Sem.(Maths)

Mathematical Modelling

Course Outcome

The students will be able

Г

- CO1- To understand what a mathematical model is and explain the series of steps involved in a mathematical modelling process.
- CO2- To state and explain the different classifications of mathematical models stating examples in each classes.
- CO3- To explain the essential features of a good model and discuss the benefits of using mathematical modelling.
- CO4 -To identify some simple real life problems that can be solved using mathematical models, model the problems , solve the resulting problem and interpret the solution.
- CO5- To acquire basic mathematical modelling skills that will enable them carry out simple modelling tasks individually or as a group.

	CO1	CO ₂	CO ₃	CO ₄	CO ₅
P0 ₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅				\checkmark	\checkmark
P0 ₆	\checkmark	\checkmark		\checkmark	\checkmark
PO ₇	\checkmark	\checkmark	\checkmark		
PO ₈	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₉					
PO ₁₀	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₁₁					

PO-CO Mapping

M.S	c. (MATH	EMATICS)	III SEMESTER			
COU	JRSE COD	E: MSM CO2 (OURSE TYPE: ECC/CB			
		COURSE TITLE: MATHEMAT	ICAL MODELLING			
		CREDIT:6	HOURS:90			
TH	EORY: 6	PRACTICAL: 0	THEORY: 90 PRACTICAL: 0			
		MARKS				
	•	ГНЕОКҮ: 100 (30+70)	PRACTICAL: 0			
Sch	eme of m	arks:				
i. Objective type questions: Twelve questions carrying 1 marks each to be asked						
ii	10 to be attempted.					
11.	three to	be attempted (Word limit 100 wor	ds).			
iii.	Middle	answer type questions: Five question	ns carrying 6marks each to be set			
	three to	be attempted (Word limit 250 wor	ds).			
IV.	three to	be attempted (Word limit 750 wor	ds).			
		Mathematical Modelling through Sys	tems of Ordinary differential Equations	;		
		of the First Order				
Mathematical modeling in population dynamics, Mathematical modeling of						
8 hi		Mathematical Models in Medicine. A	ms Race. Battles and international			
-		Trade in terms of Systems of ordinar	y differential equations - Mathematical			
		modeling in dynamics through syste	ms of ordinary differential equations of	;		
		first order. Mathematical Modelling through diff	Ference equations The need for			
s.		Mathematical modelling through diff	erence equations - some simple models	5 -		
3 hr		Basic theory of linear difference equa	ations with constant coefficients -			
18		Mathematical modelling through diff	erence equations in economics and			
		finance Mathematical Modelling through dif	former aquations (contrd)			
		Mathematical modelling through diff	erence equations in population			
hrs		dynamics and genetics. Mathematica	l Modelling through difference equation	ns		
18]		in probability theory. Miscellaneous	examples of Mathematical modelling			
• •		through difference equations				
		Mathematical modelling through Gra	phs			
Ś		Situations that can be modeled the	ough graphs - Mathematical models in	in		
3 hr		terms of directed graphs - Mathema	tical models in terms of signed graphs	s -		
18		Mathematical models in terms of we	ighted graphs			
		Mathematical Madalling through a	when of Variations and Dresses			
		Mathematical Modelling through call	cuius of variations and Dynamic es and techniques - Mathematical			
hrs		modelling through calculus of variati	ons - Mathematical Modelling through			
18		dynamic programming.				

	1. D. J. G. James and J. J. Macdonald, Case studies in Mathematical Modelling,
	Stanly Thames, Cheltonham.
o s	2. J.N. Kapur, Mathematical entropy Models.
E S	3. M. Crossand A. O. Moscrcadini, The art of Mathematical Modelling, Ellis
I I N	Harwood and John Wiley.
D H	4. C. Dyson, Elvery, Principles of Mathematical Modelling, Academic Press,
B	New York.
E C	5. D. N. Burghes, Modelling with Difference Equations, Ellis Harwood and
S H	John Wiley.

FLUID DYNAMICS

Course Outcome

The students will be able

- CO1-To understand the basic principles of fluid mechanics such as Lagrangian & Eulerian approach etc.
- CO2- To use Euler's and Bernoulli's equation and conservation of mass to determine pressure for incompressible and inviscid fluid
- CO3- To understand the concept of three dimensional flow, sources, sinks and doublets etc.
- CO4-To understand the concept of rotational & irrotational flow, stream function, complex velocity etc.
- CO5- To analyse simple fluid flow problem & understand the concept of stress, stain.

	CO1	CO ₂	CO ₃	CO ₄	CO ₅
P01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
P0 ₆	\checkmark	\checkmark		\checkmark	\checkmark
PO ₇					
PO ₈	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₉					
PO ₁₀	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₁₁					

M.S	c. (MA'	ГНЕМАТICS)	III SEMESTER		
COU	URSE C	ODE: MSM CO3	COURSE TYPE:E0	CC/CB	
		COURSE TITLE: FLU	ID DYNAMICS		
		CREDIT: 6	HOU	JRS:90	
TH	EORY:	6 PRACTICAL: 0	THEORY: 90	PRACTICAL: 0	
		MARKS			
		THEORY:100 (30+70)	PRAC	FICAL : 00	
Sch	eme of	marks:			
i. Objective type questions: Twelve questions carrying 1 marks each to be asked					
ii.	Short	answer type questions: Five questi	ons carrying 3 mark	s each to he set	
	three	to be attempted (Word limit 100 w	ords).	s cuch to be set	
iii.	Midd	le answer type questions: Five quest	ions carrying 6marl	ks each to be set	
	three	e to be attempted (Word limit 250 w	ords).		
iv.	Long	answer type questions: Three questi	ons carrying 11 mar	ks each to be set	
18 hrs.	three	Kinematics of Fluids in motion. Real at a point, Stream lines , path line potential - The vorticity vector- Loca of continuity - Worked examples - Ac boundary.	fluids and Ideal fluid s , steady and unst l and particle rates of celeration of a fluid -	s - Velocity of a fluid eady flows- Velocity f changes - Equations Conditions at a rigid	
18 hrs.	Second EQUATIONS OF MOTION OF A FLUID Pressure at a point in a fluid at rest Pressure at a point in a moving fluid - Conditions at a boundary of two inviscid immiscible fluids- Euler's equation of motion - Discussion of the case of steady motion under conservative body forces.				
18 hrs.	Some three dimensional flows. Introduction- Sources, sinks and doublets - Images in a rigid infinite plane - Axis symmetric flows - stokes stream function				
18 hrs.	SOME TWO DIMENSIONAL FLOWS Meaning of two dimensional flow - Use of Cylindrical polar coordinate - The stream function - The complex potential for two dimensional, irrotational incompressible flow - Complex velocity potentials for standard two dimensional flows - Some worked examples - Two dimensional Image systems - The Milne Thompson circle Theorem.				
18 hrs.		VISCOUS FLOWS Stress components in a real fluid Re stress- Translational motion of fluid e principal stresses - Some further prop analysis in fluid motion - Relation bet coefficient of viscosity and Laminar fl motion of a Viscous fluid.	lations between Carto lements - The rate of perties of the rate of s ween stress and rate ow - The Navier - Stol	esian components of strain quadric and train quadric - Stress of strain - The kes equations of	

<pre>/</pre>	Books Recommended :
NC	1. R.W.Fox and A.T.McDonald. Introduction to Fluid Mechanics, Wiley, 1985.
IQ	References
ΈA	1. E.Krause, Fluid Mechanics with Problems and Solutions, Springer, 2005.
0 R	2. B.S.Massey, J.W.Smith and A.J.W.Smith, Mechanics of Fluids, Taylor and
E	Francis, New York, 2005
ES	3. P.Orlandi, Fluid Flow Phenomena, Kluwer, New Yor, 2002.
191	4. T.Petrila, Basics of Fluid Mechanics and Introduction to Computational Fluid
DO:	Dynamics, Springer, berlin, 2004.
S	

Numerical Analysis -I

Course Outcome

The students will be able

- CO1-To apply calculus of finite differences.
- CO2-To apply various interpolation formulas for equal interval in calculus of finite differences.
- CO3-To apply various interpolation formulas for unequal interval in calculus of finite differences.
- CO4-To understand central difference interpolation formulas & used in different area.
- CO5- To work out numerical differentiation, integration whenever and wherever routine methods are not applicable.

	CO1	CO ₂	CO ₃	CO ₄	CO ₅
PO1	\checkmark	\checkmark	\checkmark	✓	\checkmark
PO ₂	\checkmark	\checkmark	✓	\checkmark	\checkmark
PO ₃	✓	\checkmark	✓	✓	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅					
PO ₆	\checkmark	\checkmark		✓	
PO ₇					
PO ₈	✓	\checkmark	✓		\checkmark
PO ₉			✓		\checkmark
PO ₁₀	\checkmark	\checkmark		✓	
PO ₁₁		\checkmark		✓	\checkmark

M.Sc. (MATHEMATICS) III SEMESTER COURSE CODE: MSM C04 COURSE TYPE: ECC/CB **COURSE TITLE: NUMERICAL ANALYSIS -I CREDIT: 6** HOURS:90 **THEORY: 6 PRACTICAL: 0** THEORY: 90 **PRACTICAL: 0** MARKS THEORY:100 (30+70) **PRACTICAL:00** Scheme of marks: **Objective type questions: Twelve questions carrying 1 marks each to be asked** i. 10 to be attempted. Short answer type questions: Five questions carrying 3 marks each to be set ii. three to be attempted (Word limit 100 words). Middle answer type questions: Five questions carrying 6marks each to be set iii. three to be attempted (Word limit 250 words). iv. Long answer type questions: Three questions carrying 11 marks each to be set three to be attempted (Word limit 750 words). .The calculus of Finite Differences:Differences ,fundamental theorem of **18 hrs.** difference calculus,to express any value of function in term of Δ and the leading differences of of a difference table. The operator E, properties of two operators E and A, Factorial notation, Differences of zero, Recurrence relation. Interpolation with Equal Intervals:Differenty interpolation method, method of 18 hrs. curve fitting, use of calculus of finite differences, sub-division of intervals. Interpolation with une: gual Intervals: Divided differences, Newton's formula **18 hrs.** for unequal intervals, relation between divided differences and ordinary differences, Sheppard's rule, Langrange's interpolation formula for unequal intervals, Hermite interpolation formula Central Difference Interpolation Formula: Gauss's interpolation formula, **18 hrs.** Sterling's formula, Bessel's formula, Laplace Everett Formula, Use of various interpolation formula Numerical Differentiation And Integration: Trapezoidal rule, Simpson one-**18 hrs.** third rule, Simpson three-eight rule, Weddle's rule, Cote's method, Euler-Maclaurin formula, Integration formula 1.C.E. Froberg, Introduction to Numerical Analysis, Addision Wesley-1979. SUGGESTED 2. James B. Scarbrough- Numerical Mathematical Analysis, Oxford And IBH READING publishing Co. Inc. New York 1982. 3. M.K. Jain- S.R.K. Iyangar- R.K. Jain- Numerical Methid for scientific and Engineering Computation- New Age International (P) Ltd. 1999.

• M.Sc. in MATHEMATICS FACULTY OF SCIENCE

• FOURTH SEMESTER .

Course Code	Course Type	Course (Paper/Subjects)	Credits	C Ho V	onta urs l Weel	ct Per K	Eo: Dura (Hr	SE ition 's.)
				L	Т	Р	Thy	Р
MSM 401	ссс	Integration Theory and Functional Analysis (II)	6	4	3	00	3	00
MSM 402	ссс	Partial Differential Equations &	6	4	3	00	3	00
		Mechanics (II)						
MSM 403	ССС	Operations Research (II)	6	4	3	00	3	00
MSM 421	SSC/PRJ	Dissertation	6	00	00	9	00	4
MSM D 01	ECC/CB	Fuzzy Sets and their applications						
MSM D 02	ECC/CB	Mathematical Economics						
MSM D 03	ECC/CB	Mathematical Statistics	6	4	3	00	3	00
MSM D 04	ECC/CB	Number Theory and Cryptography						
MSM D 05	ECC/CB	Numerical Analysis II						
MINIMUM C TOTAL IT W	REDITS IN I OULD BE 30	NDIVIDUAL SUBJECT IS 6 AND IN)	TOTAL= 30					

Integration Theory And Functional Analysis II

Course Outcome

The students will be able

CO1- To acquire basic knowledge of normed linear space and inner product

space.

CO2- To analyze the concept of different theorem like Hahn Banach theorem,

closed graph theorem, open mapping theorem etc.

CO3- To understand the concept of compact ,self –adjoint and normal operators.

CO4- To understand the concept of the spectrum of bounded linear operator.

CO5- To understand the difference between Banach space and Hilbert space.

	CO ₁	CO ₂	CO ₃	CO ₄	CO ₅
P01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₆	\checkmark	\checkmark		\checkmark	\checkmark
PO ₇					
PO ₈	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO9					
PO ₁₀	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₁₁					

M.Sc. (MATH	EMATICS)		IV SEMEST	TER
COURSE COD	E: MSM 401		COURSE TYP	PE: CCC
COURSE	E TITLE: INT	EGRATION THEORY	AND FUNCTIONAL	L ANALYSIS II
	CREDI	1:0	HUU	JK5:90
THEORY: 6		PRACTICAL: 0	THEORY: 90	PRACTICAL: 0
		MARKS	Γ	
THEORY: 100 (30+70) PRACTICAL:00				
Scheme of ma	arks:			
i. Objectiv 10 to b	e type quest attempted	ions: Twelve questions	carrying 1 marks e	each to be asked
ii. Short an	swer type qu	estions: Five question	s carrying 3 marks	each to be set
three to	be attempted	d (Word limit 100 word	ds).	
iii. Middle a	inswer type o	questions: Five questio	ns carrying 6marks	s each to be set
three to	be attempte	a (word limit 250 wor stions: Three question	asj. 19 carrying 11 mark	rs anch to ha sat
three to	he attempte	d (Word limit 750 wor	rds).	is each to be set
	Uniform bou	indedness theorem and	some of its conseque	ences. Open
18 hrs	mapping an	d closed graph theorems		-
	Hahn-Banac	h theorem for real linea	r spaces, complex lin	ear spaces
.S.	and normed	linear spaces. Reflexive	spaces. Weak Seque	ntial
3 hi	Compactnes	s. Compact Operators. S	olvability of linear eq	luations in
11	Banach spac	ces. The closed Range Th	eorem.	
	Inner produ	ct snaces Hilbert snaces	Orthonormal Sets	Ressel's
. lhr	inequality. C	Complete orthonormal se	ets and Parseval's ide	entity.
. 18	1			5
	Structure of	Hilbert spaces. Projectio	on theorem. Riesz	
rs.	representati	iontheorem. Adjoint of a	n operator on a Hilbe	ert space. Reflexivity
8 h	of			
-	Hilbert spac	es.		
	Self-adjoint	operators, Positive, proj	ection, normal and u	nitary
Irs.	operators. A	bstract variational boun	dary-value problem.	The
8 h	generalized	Lax-Milgram theorem.		

-	
	1. B.Choudhary and S.Nanda, Functional Analysis with Applications. Wiley
	Eastern Ltd. 1989.
	2. H.L. Rovden, Real Analysis, Macmillan Publishing Co. Inc., New York, 4'h
	Edition 1993
	2 Sarge Lang Analysis I & II Addison-Wesley Publishing Company Inc
	1067
	4. Walter Rudin, Real & Complex Analysis, Tata McGraw-Hill Publishing.
	5. Edwin Hewitt and Korl Stromberg, Real and Abstract Analysis, Springer-
	Verlag, New York.
E S	6. Edwin Hewitt and Kenneth A. Ross, Abstract Harmonic Analysis, Vol. 1,
	Springer-Verlag, 1993.
IN S	7 BV Limave Functional Analysis Wiley Eastern Ltd
D H	8 I A Lustenik and VI Scholey Elements of Functional Analysis Hindustan
D A	Dubliching Componetion New Dolbi 1071
E E	Publishing Corporation, New Denn, 1971.
R IS	9. G.F. Simmons, Introduction to Topology and Modern Analysis, McGraw-
	Hill Book Company, New York, 1963.
	10. A.E. Taylor, Introduction to Functional Analysis, John Wiley and Sons,
	New York, 1958.
	11. K.Yosida, Functional Analysis, 3'" edition Springer-Verlag, New York,
	1971.
	12. L.B. Conway, A Course in Functional Analysis, Springer-Verlag, New York,
	1990
	13 Walter Rudin Functional Analysis Tata McGraw-Hill Publishing
	Converse Let No. Delle 1072
	Company Ltd., New Delni, 1973.

Partial Differential Equations And Mechanics (II)

Course Outcome

The students will be able

- CO1- To recognize and use basic concepts and principles of classical mechanics and apply them to simple examples
- CO2- To define and understand basic mechanical concepts related to advanced problems involving the dynamic motion of classical mechanical system.
- CO3- To able to describe and understand the motion of a mechanical system using Lagrange's, Hamilton's equations.
- CO4- To formulate physical problems as PDE's using conservation laws.
- CO5- To solve complicated physical problems using the principle of least action.

	CO ₁	CO ₂	CO ₃	CO ₄	CO ₅
P0 ₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅					
PO ₆	\checkmark	\checkmark		\checkmark	\checkmark
P07					
PO ₈	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO9	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₁₀	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₁₁					

M.S	M.Sc. (MATHEMATICS) IV SEMESTER						
CO	URSE COE	DE: MSM 402	COURSE TYPE: (CCC			
со	URSE TIT	LE: PARTIAL DIFFERENTIAL EQUAT	ONS AND MECHAN	ICS (II)			
		CREDIT: 6	ΗΟυ	JRS: 90			
TH	EORY: 6	PRACTICAL: 0	THEORY: 90	PRACTICAL: 0			
		MARKS					
		THEORY:100 (30+70)	PRACT	ICAL: 00			
Sch i	eme of m	arks: vo typo quostions: Twolvo quostions	corrying 1 marks	aach ta ha askad			
1.	10 to	be attempted.		each to be asked			
ii.	Short a	nswer type questions: Five question	s carrying 3 marks	s each to be set			
;;;	three to	be attempted (Word limit 100 word	ds). ne corruing (mort	c aach ta ha cat			
111.	three to	be attempted (Word limit 250 wor	ds).	s each to be set			
iv.	Long and	swer type questions: Three question	ns carrying 11 mar	ks each to be set			
	three to	be attempted (Word limit 750 wor	ds).				
		Analytical Dynamics:	and Non-holonomic	systems			
nrs.		Scleronomic and Rheonomic sytems.	Generalized potenti	al.			
25 P		Lagrange's equations of first kind. La	grange's equations o	of second			
		kind. Uniqueness of solution. Energy	equation for conserv	vative			
		Hamilton's variables. Hamilton canor	nical equations. Cycli	c coordinates.			
		Routh's equations, Hamilton's Princip	ole,Principle of leas	t action			
hrs		Motivating problems of calculus of va	riations, Shortest di	stance.			
20		Minimum surface of revolution. Brack	histochrone problen	1.			
		isoperimetric problem. deodesic.					
		Fundamental lemma of calculus of va	riations Fuler's equ	ation for one			
nrs.		dependent function and its generalize	ation to (1) 'n' deper	ident functions, (ii)			
15]		higher order derivatives. Conditional	extremum under ge	eometric			
		constraints and under integral constr	aints.				
_		Poisson's Bracket. Poisson's Identity.	Jacobi-Poisson The	orem.			
hrs.		Lagrange Brackets. Condition of can	onical character of	a transformation in			
151	terms of Lagrange brackets and Poisson brackets, invariance of Lagrange						
Ŋ	ſS.	Hamilton-Jacobi equation. separation	n of variables in Han	niton –Jacobi solution of			
-	ц	problems.					

	1. L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics,
	Volume 19, AMS, 1998.
	2. F. Gantmacher, Lectures in Analytic Mechanics, MIR Publishers, Moscow,
S	1975.
5NG	3. R.C.Mondal, Classical Mechanics, Prentice Hall of India
DI	4. Books on Partial differential equation by 1.N. Sneddon, F. John, P. Prasad
EA	and R. Ravindran, Amarnath etc.
ED RI	5. A.S. Ramsey, Dynamics Part II, The English Language Book Society and
	Cambridge University Press, 1972.
LS	6. H. Goldstein, Classical Mechanics (2nd edition), Narosa Publishing House,
GE	New Delhi.
ng	7. I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice Hall.
S	8. Narayan Chandra Rana & Pramod Sharad Chandra Joag, Classical
	Mechanics, Tata McGraw Hill, 1991.
	9. Louis N. Hand and Janet D. Finch, Analytical Mechanics, Cambridge
	University Press, 1998

M.Sc. IV Sem.(Maths) Operation Research (II) Course Outcome

The students will be able

- CO1- To formulate & solve problems as networks and graph.
- CO2- To develope linear programming models for shortest path, maximum flow, minimal spanning tree, critical path etc.
- CO3- To learn the construction of networks of a project and optimal scheduling using CPM and PERT.

CO4-To formulate and solution of linear programming model of two person zero sum games..

CO5- To solve non –linear programming problems using Lagranges multiplier & Kuhn –Tucker condition.

	CO ₁	CO ₂	CO ₃	CO ₄	CO ₅
P01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄					
PO ₅	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₆	\checkmark	\checkmark		\checkmark	\checkmark
P07					\checkmark
PO ₈	✓	\checkmark	✓		
PO ₉			✓	\checkmark	
PO ₁₀	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₁₁					

M.Sc. (MATHEMATICS) IV SEMESTER					
COU	COURSE CODE: MSM 403			COURSE TYPE: CCC	
		COU	IRSE TITLE: OPERATIO	N RESEARCH (II)	
		CREDI	ſ: 6	HOU	JRS: 90
THE	CRY: 6		PRACTICAL: U	THEORY: 90	PRACTICAL: 0
			MARK5:		
	I	THEORY:100	(30+70)	PRAC	FICAL: 00
Sche	eme of m	arks:			
i.	Objectiv	ve type quest	ions: Twelve questions	carrying 1 marks	each to be asked
	10 to I	be attempted		· · · · · · · · · · · · · · · · · · ·	
11.	Short an	iswer type qu	lestions: Five question d (Word limit 100 wor	is carrying 3 marks	each to be set
iii.	Middle	answer type	auestions: Five question	usj. Ins carrving 6mark	s each to be set
	three to	be attempte	ed (Word limit 250 wor	ds).	
iv.	Long ans	wer type qu	estions: Three question	ns carrying 11 marl	ks each to be set
	three to	be attempte	ed (Word limit 750 wor	ds).	
Ś		Network Ar	alysis-Shortest Path Pro	blem. Minimum Spa	nning Tree Problem.
8 hr		Maximum F	low I Problem. Minimum	Lost Flow Problem.	Network Simplex
18		Method. 110	jeet i laining and contro		
s.		Dynamic Pro	ogramming-Deterministi	c and Probabilistic I)ynamic
hrs		Programmir	ng		-
12					
		Game Theor	y-Two-Person, Zero-Sun	n Games. Games with	n Mixed
hrs		Strategies. G	raphical Solution. Soluti	on by Linear Program	nming.
17					
hrs	Integer Programming-Branch and Bound Technique,Gomory's method of				
23]		solving I.P.P			
		Nonlinear P	rogramming-One/and M	ulti-Variable Uncons	strained
Irs.		Ontimization	n-Lagrangian method, Ki n Wolf's method Beal's m	uni-i ucker Conaltio Antic Providentic Pro	ns for constrained
10;		Separable P	rogramming.Convex Pro	gramming. Non-conv	vex Programming.
7			- 0		

SUGGESTED READINGS	 F.S. Hillier and G.J. Lieberman. Introduction to Operations ResBareft (SixthEdition), McGraw Hill International Edition, Industrial Engineering Series, 1995. (This book comes with a CD containing tutorial software). G. Hadley, Linear Programming, Narosa Publishing House, 1995. G. Hadly, Nonlinear and Dynamic Programming, Addison-Wesley, Reading Mass. H.A. Taha, Operations Research -An introduction, Macmillan Publishing Co., Inc., New Yark. Kanti Swarup, P.K. Gupta and Man Mohan, Operations Research, Sultan Chand & Sons, New Delhi Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali, Linear Programming and Network flows, John Wiley & Sons, New York, 1990. S.S. Rao, Optimization Theory and Applications, Wiley Eastern Ltd., New Delbi
SUGG REAL	 Kanti Swarup, P.K. Gupta and Man Monan, Operations Research, Sultan Chand & Sons, New Delhi Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali, Linear Programming and Network flows, John Wiley & Sons, New York, 1990. S.S. Rao, Optimization Theory and Applications, Wiley Eastern Ltd., New Delhi.
	7. Prem Kumar Gupta and D.S. Hira, Operations Research-An Introduction. S. Cliand & Company Ltd., New Delhi.

M.Sc. (MATHEMATICS)		IV SEMESTE	R		
COURSE CODE: MSM 421		COURSE TYPE	: SSC/PRJ		
	COURSE TITLE	DISSERTATION			
	CREDIT:6		IOURS: 135		
THEORY: 0	THEORY: 0 PRACTICAL: 6		PRACTICAL:135		
	MARI	KS: 100			
,	ГНЕОRY: 0	PRACTI	PRACTICAL:100 (50+50)		
OBJECTIVE: The m their own as well Dissertation shou declaration by th introduction along 1. Introduction 2. Review of Litera 3. Materials and Me 4. Results and Disc 5. Summary 6. Bibliography	nain objective of the dissert development of skill rela ld be related to the fie ne candidate, certificate with the following points: ture ethods russions	ation is to enable the ted to research and eld of Physics. Diss by supervisor, Acki	students to learn on developmental activities. sertation should include nowledgement, title and		

FUZZY SETS AND ITS APPLICATIONS

Course Outcome

The students will be able

CO1-To distinguish between the crisp set and fuzzy set concept

through the learned differences between the crisp set

characteristic and the fuzzy set membership function.

CO2- To understand the extension principles.

CO3- To demonstrate fuzzy relation on fuzzy set.

- CO4- To understand the concept of fuzzy logic.
- CO5- To analyze possibility theory, evidence theory.

	CO1	CO ₂	CO ₃	CO ₄	CO ₅
P01	\checkmark	\checkmark	✓	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark
PO ₃	\checkmark	\checkmark	✓	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅	~	\checkmark	\checkmark	\checkmark	\checkmark
PO ₆	\checkmark	\checkmark		\checkmark	\checkmark
P07			\checkmark	\checkmark	\checkmark
PO ₈	\checkmark	\checkmark	✓		
PO ₉	\checkmark	\checkmark	\checkmark		\checkmark
PO ₁₀	\checkmark	\checkmark		\checkmark	\checkmark
PO ₁₁	\checkmark		\checkmark	\checkmark	

M.Sc. (MATHEMATICS) IV SEMESTER					
COURSE CO	DE: MSM D01	COURSE TYPE: ECC/CB			
	COURSE TITLE: FUZZY SETS AND ITS APPLICATIONS				
	CREDIT: 6	HOURS: 90			
THEORY:	6 PRACTICAL: 0	THEORY:90 PRACTICAL: 0)		
	MARKS:				
Cahama af m	(HEORY:100 (30+70)	PRACTICAL: 00			
i Objectiv	arks: ve type questions: Twelve question	s carrying 1 marks each to be asked	1		
10 to	be attempted.	s carrying r marks cach to be asked	L		
ii. Short ai	nswer type questions: Five question	ns carrying 3 marks each to be set			
three to	be attempted (Word limit 100 wor	rds).			
iii. Middle	answer type questions: Five questions and the attempted (Word limit 250 way	ons carrying 6marks each to be set			
iv. Long an	swer type questions: Three questions	rus). ns carrying 11 marks each to be set			
three to	be attempted (Word limit 750 wor	rds).			
, ià	Fuzzy sets-Basic definitions, -level se	ets. Convex fuzzy sets. Basic			
hrs	Operations on fuzzy sets. Types of fu	zzy sets. Cartesian products,			
23	Algebraic products. Bounded sum an	d difference, t-norms and t-conorms.			
	The Extension Principle- The 7adeh's	s extension principle Image and invers	20		
rs.	image of fuzzy sets. Fuzzy numbers.	Elements of fuzzy arithmetic.	<i>.</i> .		
, ч 		-			
	Fuzzy Relations on Fuzzy sets, Comp	osition of Fuzzy relations. Min-Max			
Irs.	composition and its properties. Fuzz	y equivalence relations. Fuzzy			
[2]	compatibility relations. Fuzzy relation	on equations. Fuzzy graphs, Similarity			
	Possibility Theory-Fuzzy measures	. Evidence theory. Necessity measu	ıre.		
hrs	Possibility measure. Possibility distr	ibution. Possibility theory and fuzzy se	ets.		
17	Possibility theory versus probability	theory.			
		lasta Maldad - Harts D			
Ś	Fuzzy Logic-An overview of classical	logic, Multivalued logics, Fuzzy			
3 hr	propositions. Fuzzy quantifiers. Linguistic variables and hedges. Inference				
18	nom conditional luzzy propositions,	the compositional fulle of interence			
	1. H.J. Zmmemann, Fuzzy set theory a	and its Applications, Allied Publishers			
	Ltd. New Delhi, 1991.				
IED					
ESI	2. G.J. Klir and B. Yuan- Fuzzy sets an	d fuzzy logic, Prentice-Hall ol India, Ne	W		
IGG EA	Deini, 1995.				
R					

Mathematical Economics

Course Outcome

The students will be able

CO1- To improve the mathematical skills necessary to study

economics.

.

- CO2- To use appropriate techniques to solve problems with calculus and linear algebra.
- CO3- To use mathematics in economics and business applications successfully.
- CO4- To develop analytical and organization skills.
- CO5- To develop both independent learning and group work skills.

	CO1	CO ₂	CO ₃	CO ₄	CO ₅
P01	\checkmark	\checkmark	\checkmark	\checkmark	✓
PO ₂	\checkmark				\checkmark
PO ₃	\checkmark	\checkmark	✓	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅	\checkmark		\checkmark	\checkmark	
PO ₆	\checkmark	\checkmark			
PO ₇	\checkmark		✓	\checkmark	\checkmark
PO ₈	\checkmark	\checkmark	\checkmark		
PO ₉	\checkmark	\checkmark	\checkmark		✓
PO ₁₀	\checkmark	\checkmark		\checkmark	✓
PO ₁₁	\checkmark		\checkmark	\checkmark	

M.SC. (MA	THEMATICS	5)	IV SEMEST	ER			
COURSE C	ODE: MSM	D02	COURSE TYP	E: ECC/CB			
	COURSE TITLE: MATHEMATICAL ECONOMICS						
	CRED	DIT:6	HOU	RS: 90			
THEORY:	6	PRACTICAL: 0	THEORY: 90	PRACTICAL: 0			
		MARKS	:				
	THEORY: 1	00 (30+70)	PRACT	ГICAL: 00			
Scheme of	marks:						
i. Objec	tive type que	estions: Twelve question	ns carrying 1 marks	each to be asked			
10 to	be attempt	ed.		a a a a b t a b a a a t			
II. SNOFT	answer type to be attemp	ted (Word limit 100 wo	nis carrying 3 mark rds)	s each to be set			
iii. Middl	e answer tvr	e questions: Five quest	ons carrying 6mark	s each to be set			
three	to be attemp	oted (Word limit 250 wo	ords).				
iv. Long a	nswer type c	uestions: Three question	ons carrying 11 mar	ks each to be set			
three	to be attemp	oted (Word limit 750 wo	ords).				
Ś	THE THE	ORY OF FIRM: Basic (oncepts - Optimizir	ig Behavior - Input			
hr	Homogen	- Cost Functions - Joint I	- CFS Production Fu	nction			
18	nomogen		5 CL5 I Toutetion I u	netion.			
	DEDEECT	COMPETITION: Accumpt	ons of Parfact Compo	tition - Demand			
rs.	Functions	- Supply Functions - Com	modity - Market Faul	ilibrium - An			
8 h	annlicatio	n to Tavation	mourty Market Equi				
-							
	MARKET	EQUILIBRIUM: Factor	Market Equilibrium	n - Existence and			
hrs	Uniquenes	ss of Equilibrium - Stabil	ity of Equilibrium - 1	Dynamic Equilibrium			
18	with Lagg	ed Adjustment.					
	00	,					
	ANALYSIS	OF VARIANCE:One way	classification and tw	vo-way classification.			
Ś.	Hypothese	es Testing Poser functio	$ns - \Omega C$ function - 1	Most Powerful test -			
inypoliteses result. Fosei functions - OC function - Most Powellul							
15	Uniformly	most powerful test - unb	lased test				
	WELFARE	ECONOMICS: Pareto	Optimality - the e	fficiency of Perfect			
Irs.	competitie	on - The efficiency of Im	perfect competition	- External Effects in			
8 h	consumpt	ion and Production - Tax	es and Subsidies - Soc	cial Welfare functions			
-	- The theo	ry of Second Best.					

		Recommended Book:
SUGGESTED	ADINGS	1. William J. Baumol. Economic Theory and Operations Analysis, Prentice Hall of India, New Delhi, 1978
		Reference Books
		1. A.C.Chiang, Fundamental Methods of Mathematical Economics, McGraw Hill, New York, 1984
	RI	2. Michael D. Intriligator, Mathematical Optimization and Economic Theory, Prentice Hall, New York, 1971.
		3. A. Kautsoyiannis, Modern Microeconomics (2nd edn) MacMillan, New York, 1979

Mathematical Statistics

Course Outcome

The students will be able

- CO1- To describe and discuss the key terminology, concepts tools and techniques used in business statistical analysis.
- CO2- To critically evaluate the underlying assumptions of analysis tools.
- CO3- To understand and critically discuss the issues surrounding sampling and significance.
 - CO4- To discuss critically the uses and limitations of statistical analysis.
 - CO5- To solve a range of problems using the techniques covered and conduct basic statistical analysis of data.

	CO_1	CO ₂	CO ₃	CO_4	CO ₅
PO_1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
P06	\checkmark	\checkmark			
P07		\checkmark	\checkmark	\checkmark	\checkmark
PO ₈	\checkmark	\checkmark	\checkmark	\checkmark	
PO ₉		\checkmark	\checkmark		\checkmark
PO ₁₀	\checkmark	\checkmark		\checkmark	\checkmark
PO ₁₁	\checkmark		\checkmark	\checkmark	

M.Sc (MATHEMATICS)			IV SEMESTER		
COURSE CODE: MSM D03			COURSE TYPE: ECC/CB		
		COURSE TITLE: Mathen	natical Statistic	CS CS	
		CREDIT:6	HO	URS: 90	
тц	FODV. 6	DDACTICAL	ΤΗΕΛΟΥ, ΟΛ	DDACTICAL	
111		MARKS	THEORI, 90	I RACIICAL. U	
	,	ГНЕОRY: 100 (30+70)	PRACT	TICAL: 00	
Sch	eme of m	arks:			
i.	Objecti	ve type questions: Twelve question	s carrying 1 marks	each to be asked	
	10 to	be attempted.		a aach ta ha aat	
11.	three to	be attempted (Word limit 100 wor	ds).	s each to be set	
iii.	Middle	answer type questions: Five question	ons carrying 6mar	ks each to be set	
	three to	be attempted (Word limit 250 wo	rds).		
1V.	three to	o be attempted (Word limit 750 wo	ns carrying 11 mai rds).	rks each to be set	
18 hrs.	SAMPLE MOMENTS AND THEIR FUNCTIONS:Notion of a sample and a statistic - Distribution functions of X, S ² and (X, S ²) - χ^2 distribution, Student t-distribution, Fisher's Z – distribution, Snedecor's F – distribution, Distribution of sample mean from non-normal nonulations				
18 hrs.	SIGNIFICANCE TEST : Concept of a statistical test - Parametric tests for small samples and large samples - χ ² test, Kolmogorov Theorem 10.11.1 - Smirnov Theorem 10.11.2 - Tests of Kolmogorov and Smirnov type - The Wald- Wolfovitz and Wilcoxon -Mann-Whitney tests - Independence Tests by contingency tables.				
18 hrs.	ESTIMATION: Preliminary notion - Consistency estimation - Unbiased estimates - Sufficiency - Efficiency - Asymptotically most efficient estimates - methods of finding estimates - confidence Interval.				
18 hrs.	ANALYSIS OF VARIANCE : One way classification and two-way classification. Hypotheses Testing: Poser functions - OC function - Most Powerful test - Uniformly most powerful test - unbiased test.				
18 hrs.	SEQUENTIAL ANALYSIS : SPRT - Auxiliary Theorem - Wald's fundamental identity - OC function and SPRT - E(n) and Determination of A and B - Testing a hypothesis concerning p on 0-1 distribution and m in Normal distribution.				

S	Recommended Text					
5	M. Fisz , Probability Theory and Mathematical Statistics, John Wiley and sons,					
	New Your, 1963.					
D						
A	Reference Books					
E	1. E.J.Dudewicz and S.N.Mishra , Modern Mathematical Statistics, John Wiley					
H	and Sons, New York, 1988.					
E	2. V.K.Rohatgi An Introduction to Probability Theory and Mathematical					
E	Statistics, Wiley Eastern New Delhi, 1988(3rd Edn)					
S	3. G.G.Roussas, A First Course in Mathematical Statistics, Addison Wesley					
5	Publishing Company, 1973					
G	4. B.L.Vander Waerden, Mathematical Statistics, G.Allen & Unwin Ltd.,					
D.	London, 1968.					

NUMBER THEORY AND CRYPTOGRAPHY

Course Outcome

The students will be able

- CO1- To study briefly about number theory , encryption and secrecy.
- CO2- To learn about symmetric key encryption, stream cipers and DES
- CO3- To gain knowledge about factorization problem and discrete logarithm problem.
 - CO4- To understand finite fields and quadratic residues with basic properties.
 - CO5- To study briefly about public key cryptography,RSA and discrete logarithm.

	CO_1	CO ₂	CO ₃	CO ₄	CO ₅
P01	\checkmark	\checkmark	\checkmark	✓	✓
PO ₂	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_4	\checkmark	\checkmark	~	\checkmark	\checkmark
PO ₅	\checkmark		\checkmark	\checkmark	
PO ₆	\checkmark	\checkmark	\checkmark		
PO ₇	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₈	\checkmark	\checkmark	\checkmark		
PO ₉			\checkmark		✓
PO ₁₀	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₁₁	\checkmark		\checkmark	\checkmark	

M.Sc. (MATHEMATICS) IV SEM				IV SEMESTER		
CO	COURSE CODE: MSM D04COURSE TYPE: ECC/CB					
		COURSE T	ITLE: NUMBER THEC	ORY AND CRYPTO	GRAPHY	
		CRED	IT: 6	НС	OURS: 90	
TH	EORY: 6	6	PRACTICAL: 0	THEORY: 90	PRACTICAL: 0	
			MARK	S:		
	,	THEORY: 1(00 (30+70)	PRAC	TICAL: 00	
Sch	eme of m	arks:		•		
i.	Objecti	ve type que	stions: Twelve questic	ons carrying 1 mark	s each to be asked	
	10 to	be attempt	ed.			
11.	Short a	nswer type	questions: Five questi	ons carrying 3 mar	ks each to be set	
iii.	Middle	answer tvn	e questions: Five ques	tions carrying 6ma	rks each to be set	
	three t	o be attemp	ted (Word limit 250 w	ords).		
iv.	Long an	swer type q	uestions: Three quest	ions carrying 11 ma	arks each to be set	
	three t	o be attemp	ted (Word limit 750 w	ords).		
ſS.	Elementary Number Theory					
3 hi		Time Estin	nates for doing arithmet	ac - Divisibility and E	uclidean algorithm -	
18		Congruent	les - Applications to fact	or mg.		
	, i	Cryptogra	phy			
18	hrs	Some simp	ole crypto systems - Enc	iphering matrices.		
		Einite Eicl	de and que dretie Desidu	a Finita fielda Qua	duatia ugaiduga au d	
8	l's.	Reciprocit	us and quadratic Residu v	es. Finite heius - Qua	uratic residues and	
1	h	Recipioen	y.			
		Public Key	Cryptography			
hrs	The idea of public key cryptography - RSA - Discrete log – Knapsack.					
18]						
		D 11				
		Primality a	and Factoring			
hrs		Pseudopri	mes - The rho method -	Fermat factorization	and factor bases - The	
18		Continued	fraction method - The c	uadratic sieve metho	od. Chapter-V	
		Sommucu	indenon method The t	auditude sieve meth	sa diaptor v	

		Recommended Text
SUGGESTED		Neal Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, New York, 2002, Second Edition.
	READINGS	Reference Books
		1. Niven and Zuckermann, An Introduction to Theory of Numbers (Edn. 3), Wiley Eastern Ltd., New Delhi, 1976.
		2. David M.Burton, Elementary Number Theory, Wm C.Brown Publishers, Dubuque, Iowa, 1989.
		3. K.Ireland and M.Rosen, A Classical Introduction to Modern Number Theory, Springer Verlag, 1972.

M.Sc. IV Sem.(Maths) Numerical Analysis -II Course Outcome

The students will be able

- CO1- To perform basic mathematical operations on numerical analysis.
- CO2- To investigate numerical solution of difference equation.
- CO3- To gain knowledge in finding solution of ordinary differential equation problem.
- CO4- To find a numerical solution of differential equation by different method like Euler method, Picard method ,Taylor method etc.
- CO5- To research numerical solutions of difference and differencial equation systems.

	CO_1	CO_2	CO_3	CO_4	CO_5
P01	\checkmark	\checkmark	\checkmark	✓	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark	✓	\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	✓	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	✓	\checkmark
PO ₅	\checkmark		\checkmark	\checkmark	
PO ₆	\checkmark	\checkmark			
P07			\checkmark	✓	\checkmark
PO ₈	\checkmark	\checkmark	\checkmark		
PO ₉			\checkmark		\checkmark
PO ₁₀	\checkmark	\checkmark		✓	\checkmark
PO ₁₁	\checkmark		\checkmark	\checkmark	

M.Sc. (MATHEMATICS) IV SEMESTER				
COURSE COD	DE: MSM D05	COURSE TYPE: ECC	/CB	
	COURSE TITLE: NUMERI	CAL ANALYSIS –II		
	CREDIT: 6	HOU	JRS: 90	
THEORY: 6	PRACTICAL: 0	THEORY: 90	PRACTICAL: 0	
	MARKS			
]	ГНЕОRY: 100 (30+70)	PRACT	ICAL: 00	
Scheme of m	arks:			
i. Objectiv	ve type questions: Twelve questior	is carrying 1 marks	each to be asked	
10 to	be attempted. Swor type questions: Five, questio	nc corrying 2 mort	s aach ta ha sat	
three to	be attempted (Word limit 100 wo	rds).	s each to be set	
iii. Middle	answer type questions: Five quest	ons carrying 6mark	s each to be set	
three to	b be attempted (Word limit 250 wo	ords).		
iv. Long and	swer type questions: Three questions	ons carrying 11 mar	ks each to be set	
three to	Difference Equation 1: Homogene	orasj. Jous linear difference	equations with	
S	constant coefficients. Existance and	uniqueness theorem	Different method	
3 hi	for finding particular solution in cas	e of non -homogeneo	ous linear equation	
11			-	
	Difference Equation II: Methods o	f variation of parame	ters. Method of	
S.	generating function, non -homogene	eous linear difference	equation with	
8 hi	variable coefficient, Solution of som	e special types of diff	erence equation,	
Solution of homogeneous difference equation (degree2), Simultanious				
	Numerical Solution of ordinary	Differential Fouation	n of Lorder Picard's	
rs.	method of succesive Approximat	ion, Euler's method	d, Improved Euler's	
8 h	method, Modified Euler's method,	Taylor's series Meth	nod, Milne's method,	
-	Runge's method, Runge- Kutta Meth	od		
, i	Solution of algebraic and transce	ndental equation : B	Bisection method,	
hrs	method for finding initial approximation	ate value of root, New	vton's iterative	
18	formula for obtaining square root, F	ate of convergence of	of Newton's method.	
	Simultaneous linear algebraic eq	uation:Gauss- Iorda	n ellimination	
rs.	method, Crout's Method, Method of	factorization, Jacobi i	terative method,	
8 h	Gauss- Seidel iterative method, Rela	xation method due to	o Southwel	
1				
	1.C.E. Froberg, Introduction to Nu	merical Analysis,Add	lision Wesley-1979.	
0	2. James B. Scarbrough- Numeri	cal Mathematical A	nalysis, Oxford And	
GS	IBH publishing Co. Inc. New York	1982.		
LS	3. M.K. Jain- S.R.K. Iyangar- R.K. Ja	ain- Numerical Meth	id for scientific and	
AD	Engineering Computation- New Ag	ge international (P)	Lta. 1999.	
UG RE.				
I S				